Studies on the mechanism of the enolization reaction of Grignard reagents and ketones. Part 2. Pseudo-first-order rate and deuterium isotope effect studies

Author(s):  
A. George Pinkus ◽  
Arunachalam Sabesan
1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1990 ◽  
Vol 68 (2) ◽  
pp. 476-479
Author(s):  
Donald C. Wigfield ◽  
Douglas M. Goltz

The kinetics of the reconstitution reaction of apotyrosinase with copper (II) ions are reported. The reaction is pseudo first order with respect to apoenzyme and the values of these pseudo first order rate constants are reported as a function of copper (II) concentration. Two copper ions bind to apoenzyme, and if the second one is rate limiting, the kinetically relevant copper concentration is the copper originally added minus the amount used in binding the first copper ion to enzyme. This modified copper concentration is linearly related to the magnitude of the pseudo first order rate constant, up to a copper concentration of 1.25 × 10−4 M (10-fold excess), giving a second order rate constant of 7.67 × 102 ± 0.93 × 102 M−1∙s−1.Key words: apotyrosinase, copper, tyrosinase.


1975 ◽  
Vol 28 (5) ◽  
pp. 1133 ◽  
Author(s):  
S Chan ◽  
S Tan

The pseudo first-order rate constants for the mercury(II)-induced aquation of trans-[Co(Hdmg)2(NH3)Cl] (Hdmg = dimethylglyoximate ion) have been measured in aqueous and aqueous ethanol solutions (ethanol- water mole ratio 1 : 5.1) containing various excess amounts of mercury(II)ion at 273.2 K. Association constants of the complex formed with mercury(II) ion and rate constants for dissociation of the activated complex in both solutions have been calculated. The kinetic results are discussed in terms of formation of an activated complex Co-C1-Hg, followed by a simple rate-determining aquation in which HgCl+ acts as the leaving group.


1981 ◽  
Vol 59 (21) ◽  
pp. 3034-3038 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Przemyslaw Pruszynski

4-Nitrophenylnitromethane reacts with 2,7-dimethoxy-1,8-bis(dimethylamino)naphthalene in acetonitrile in a bimolecular proton transfer, which shows a primary deuterium isotope effect, kH/kD = 12.2 at 25 °C. The large isotope effect on the enthalpy of activation, (ΔHD≠ – ΔHH≠) = 4.6 ± 0.3 kcal mol−1 is consistent with a significant contribution of proton tunnelling to the reaction rate of the protium substrate.The analogous reaction of 1-(4-nitrophenyl)-1-nitroethane with the same base in acetonitrile gives contrasting kinetics and reaction parameters. The reaction is first order, showing no dependence on base concentration. While the isotope effect kH/kD = 9.3 at 25 °C, the enthalpy of activation difference (ΔHD≠ – ΔHH≠) is only 0.5 ± 0.1 kcal mol−1. It is concluded that the 1-(4-nitrophenyl)-1-nitroethane undergoes a slow dissociation, with a very small dissociation constant, followed by a fast association with the base to yield the carbanion ion-pair.


1993 ◽  
Vol 293 (2) ◽  
pp. 537-544 ◽  
Author(s):  
H J Lee ◽  
S H Chiou ◽  
G G Chang

The argininosuccinate lyase activity of duck delta-crystallin was inactivated by diethyl pyrocarbonate at 0 degrees C and pH 7.5. The inactivation followed pseudo-first-order kinetics after appropriate correction for the decomposition of the reagent during the modification period. The plot of the observed pseudo-first-order rate constant versus diethyl pyrocarbonate concentration in the range of 0.17-1.7 mM was linear and went through the origin with a second-order rate constant of 1.45 +/- 0.1 M-1.s-1. The double-logarithmic plot was also linear, with slope of 1.13, which suggested a 1:1 stoichiometry for the reaction between diethyl pyrocarbonate and delta-crystallin. L-Arginine, L-norvaline or L-citrulline protected the argininosuccinate lyase activity of delta-crystallin from diethyl pyrocarbonate inactivation. The dissociation constants for the delta-crystallin-L-arginine and delta-crystallin-L-citrulline binary complexes, determined by the protection experiments, were 4.2 +/- 0.2 and 0.12 +/- 0.04 mM respectively. Fumarate alone had no protective effect. However, fumarate plus L-arginine gave synergistic protection with a ligand binding interacting factor of 0.12 +/- 0.02. The double-protection data conformed to a random Uni Bi kinetic mechanism. Fluorescence-quenching studies indicated that the modified delta-crystallin had minimum, if any, conformational changes as compared with the native delta-crystallin. Inactivation of the enzyme activity was accompanied by an increasing absorbance at 240 nm of the protein. The absorption near 280 nm did not change. Treatment of the modified protein with hydroxylamine regenerated the enzyme activity to the original level. These results strongly indicated the modification of an essential histidine residue. Calculation from the 240 nm absorption changes indicated that only one histidine residue per subunit was modified by the reagent. This super-active histidine residue has a pKa value of approximately 6.8 and acts as a general acid-base catalyst in the enzyme reaction mechanism. Our experimental data are compatible with an E1cB mechanism [Raushel (1984) Arch. Biochem. Biophys. 232, 520-525] for the argininosuccinate lyase with the essential histidine residue close to the arginine-binding domain of delta-crystallin. L-Citrulline, after binding to this domain, might form an extra hydrogen bond with the essential histidine residue.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
M. Niyaz Khan ◽  
Yoke-Leng Sim ◽  
Azhar Ariffin

The values of pseudo-first-order rate constants (kobs) for alkaline hydrolysis of1, obtained at 1.0 mM NaOH and withinCmEnT(total concentration ofCmEn) range of 3.0–5.0 mM forC12E23and 10–20 mM forC18E20, fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversibleCmEnmicellar trapped1molecules (FIT1) vary in the range ~0–0.75 forC12E23and ~0–0.83 forC18E20under such conditions. The values ofFIT1become 1.0 at ≥10 mMC12E23and 50 mMC18E20. Kinetic analysis of the observed data at ≥10 mMC12E23shows near irreversible micellar entrapment of1molecules under such conditions.


2011 ◽  
Vol 11 (1) ◽  
pp. 129-134 ◽  
Author(s):  
A. Dulov ◽  
N. Dulova ◽  
Y. Veressinina ◽  
M. Trapido

The degradation of propoxycarbazone-sodium, an active component of commercial herbicide, in aqueous solution with ozone, UV photolysis and advanced oxidation processes: O3/UV, O3/UV/H2O2, H2O2/UV, and the Fenton process was studied. All these methods of degradation proved feasible. The kinetics of propoxycarbazone-sodium degradation in water followed the pseudo-first order equation for all studied processes except the Fenton treatment. The application of schemes with ozone demonstrated low pseudo-first order rate constants within the range of 10−4 s−1. Addition of UV radiation to the processes improved the removal of propoxycarbazone-sodium and increased the pseudo-first order rate constants to 10−3 s−1. The Fenton process was the most efficient and resulted in 5 and 60 s of half-life and 90% conversion time of propoxycarbazone-sodium, respectively, at 14 mM H2O2 concentration. UV treatment and the Fenton process may be recommended for practical application in decontamination of water or wastewater.


Sign in / Sign up

Export Citation Format

Share Document