The complex interplay between autophagy and cell death pathways

2022 ◽  
Vol 479 (1) ◽  
pp. 75-90
Author(s):  
Christina Ploumi ◽  
Margarita-Elena Papandreou ◽  
Nektarios Tavernarakis

Autophagy is a universal cellular homeostatic process, required for the clearance of dysfunctional macromolecules or organelles. This self-digestion mechanism modulates cell survival, either directly by targeting cell death players, or indirectly by maintaining cellular balance and bioenergetics. Nevertheless, under acute or accumulated stress, autophagy can also contribute to promote different modes of cell death, either through highly regulated signalling events, or in a more uncontrolled inflammatory manner. Conversely, apoptotic or necroptotic factors have also been implicated in the regulation of autophagy, while specific factors regulate both processes. Here, we survey both earlier and recent findings, highlighting the intricate interaction of autophagic and cell death pathways. We, Furthermore, discuss paradigms, where this cross-talk is disrupted, in the context of disease.

2017 ◽  
pp. 43-66
Author(s):  
Chrisna Swart ◽  
Andre Du Toit ◽  
Ben Loos

2020 ◽  
Author(s):  
Virginia L. King ◽  
Nathan K. Leclair ◽  
Kenneth G. Campellone

AbstractThe actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two, JMY and WHAMM, are required for rapid apoptotic responses. JMY and WHAMM enable p53-dependent cell death by enhancing mitochondrial permeabilization, initiator caspase cleavage, and executioner caspase activation. The loss of JMY additionally results in significant changes in gene expression, including upregulation of the small G-protein RhoD. Depletion or deletion of RHOD increases cell death, suggesting that RhoD normally plays a key role in cell survival. These results give rise to a model in which JMY and WHAMM promote intrinsic cell death responses that can be opposed by RhoD.Author SummaryThe actin cytoskeleton is a collection of protein polymers that assemble and disassemble within cells at specific times and locations. Cytoskeletal regulators called nucleation-promoting factors ensure that actin polymerizes when and where it is needed, and many of these factors are members of the Wiskott-Aldrich Syndrome Protein (WASP) family. Humans express 8 WASP-family proteins, but whether the different factors function in programmed cell death pathways is not well understood. In this study, we explored roles for each WASP-family member in apoptosis and found that a subfamily consisting of JMY and WHAMM are critical for a rapid pathway of cell death. Furthermore, the loss of JMY results in changes in gene expression, including a dramatic upregulation of the small G-protein RhoD, which appears to be crucial for cell survival. Collectively, our results point to the importance of JMY and WHAMM in driving intrinsic cell death responses plus a distinct function for RhoD in maintaining cell viability.


2009 ◽  
Vol 29 (15) ◽  
pp. 4116-4129 ◽  
Author(s):  
Senthilkumar B. Rajamohan ◽  
Vinodkumar B. Pillai ◽  
Madhu Gupta ◽  
Nagalingam R. Sundaresan ◽  
Konstantin G. Birukov ◽  
...  

ABSTRACT Poly(ADP-ribose) polymerase 1 (PARP1) and SIRT1 deacetylase are two NAD-dependent enzymes which play major roles in the decision of a cell to live or to die in a stress situation. Because of the dependence of both enzymes on NAD, cross talk between them has been suggested. Here, we show that PARP1 is acetylated after stress of cardiomyocytes, resulting in the activation of PARP1, which is independent of DNA damage. SIRT1 physically binds to and deacetylates PARP1. Increased acetylation of PARP1 was also detected in hearts of SIRT1−/− mice, compared to that detected in the hearts of SIRT1+/+ mice, confirming a role of SIRT1 in regulating the PARP1 acetylation in vivo. SIRT1-dependent deacetylation blocks PARP1 activity, and it protects cells from PARP1-mediated cell death. We also show that SIRT1 negatively regulates the activity of the PARP1 gene promoter, thus suggesting that the deacetylase controls the PARP1 activity at the transcriptional level as well. These data demonstrate that the activity of PARP1 is under the control of SIRT1, which is necessary for survival of cells under stress conditions.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4707-4707
Author(s):  
Katia Beider ◽  
Evgenia Rosenberg ◽  
Hanna Bitner ◽  
Merav Leiba ◽  
Maya Koren-Michowitz ◽  
...  

Abstract Introduction: Multiple myeloma (MM) is an incurable hematological malignancy characterized by proliferation of malignant plasma cells in the bone marrow (BM). Interactions between MM cells and BM milieu facilitate disease progression and therapy resistance. Chemokine receptor CXCR4 and its cognate ligand CXCL12 are implicated in these processes and are associated with poor prognosis. Sphingosine-1-phosphate (S1P) pathway is involved in cancer progression, including oncogenesis, cell survival and cell migration, therefore representing an attractive target for anti-cancer therapy. FTY720 (fingolimod) is a modulator of S1P signaling system that exhibit immunosuppressive and anti-cancer properties. The role of S1P system and FTY720 modulator in MM is less defined. The aim of this study was to explore the functional consequences of possible cross-talk between the CXCR4/CXCL12 and the S1P axes in MM cells and to evaluate the effect of S1P targeting with FTY720 as potential anti-MM therapeutic strategy. Results: The partners of the S1P pathway (S1P receptor 1 and sphingosine kinase 1 (SPHK1)) and CXCL12 chemokine were found to be co-expressed in MM cell lines and primary BM samples from MM patients. Increased mRNA levels of SPHK1 and CXCL12 were detected in MM BM samples (n=24) comparing to BM from healthy donors (n=7) (p<0.01). In vitro treatment of MM cell lines (n=6) with FTY720 modulator resulted in time- and dose-dependent cell death (IC50 2.8 – 5.3 µM). Further characterization of cell death mechanisms revealed that FTY720 treatment induced MM cell apoptosis with mitochondrial involvement, cytochrome C release and caspase 3 activation. Interestingly, suppressive potential of FTY720 negatively correlated with CXCR4 expression on MM cells. Enforced expression of CXCR4 reduced the sensitivity to FTY720, whereas silencing of endogenous CXCL12 increased the sensitivity of MM cells to FTY720-mediated cell death. These results suggested the CXCR4 axis to be directly regulated by S1P pathway. In support, we have found that FTY720 treatment significantly reduced CXCR4-dependent MM cell adhesion to fibronectin and abrogated MM migration toward CXCL12. Activation of signaling pathways, such as MAPK and Akt, in response to CXCL12 stimulation was also fully blocked by FTY720 pre-treatment. In addition to functional suppression, FTY720 directly and profoundly reduced CXCR4 cell-surface levels in a dose-dependent manner. Importantly, none of the suppressive effects of FTY720 (neither apoptosis, nor migration or adhesion inhibition) were dependent on protein phosphatase 2A (PP2A) activation, suggesting alternative mechanism of action. To further investigate down-stream molecular machinery involved in FTY720-mediated CXCR4 targeting in MM cells, the intra-cellular levels of different signaling mediators were evaluated. We identified the mTOR pathway to be regulated by CXCR4 and targeted by FTY720. FTY720 treatment suppressed mTOR signaling in MM cells, as demonstrated by de-phosphorylation of p70S6K and S6. Forced expression of CXCR4 and interaction with BM stromal cells antagonized with FTY720-mediated apoptosis and prevented FTY720-induced S6 de-phosphorylation. While, combination of FTY720 with mTOR inhibitor RAD001 resulted in significantly increased cell death, effectively abrogating CXCR4- and stroma-dependent resistance to FTY720 and suppressing mTOR signaling in MM cells. Finally, in a recently developed novel xenograft model of CXCR4-dependent systemic MM with BM involvement, in vivo FTY720 effectively reduced tumor burden in two third of the treated mice, decreasing both the levels of M protein in blood and the number of MM cells in BM. Conclusions: Taken together, our findings demonstrate cross talk between S1P and CXCR4/CXCL12 signaling pathways that may be of importance for MM cell survival and localization of the MM cells in CXCL12-expressing protective niches in the BM. Moreover, this is, to our knowledge, the first evidence that CXCR4 can be directly targeted with FTY720 modulator, thus restricting the tumor-promoting activities of S1P and CXCR4/CXCL12 axes. In addition, mTOR pathway was recognized as down-stream molecular partner being involved in FTY720-mediated anti-myeloma activities. Combining FTY720 with mTOR inhibitors may thus serve as promising novel therapeutic strategy in MM. Disclosures Peled: BioLineRx: Research Funding.


2021 ◽  
Vol 128 (7) ◽  
pp. 969-992
Author(s):  
Stephanie M. Cicalese ◽  
Josiane Fernandes da Silva ◽  
Fernanda Priviero ◽  
R. Clinton Webb ◽  
Satoru Eguchi ◽  
...  

Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.


2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Annelise G. Snyder ◽  
Andrew Oberst

Nearly all animal cells contain proteins evolved to trigger the destruction of the cell in which they reside. The activation of these proteins occurs via sequential programs, and much effort has been expended in delineating the molecular mechanisms underlying the resulting processes of programmed cell death (PCD). These efforts have led to the definition of apoptosis as a form of nonimmunogenic PCD that is required for normal development and tissue homeostasis, and of pyroptosis and necroptosis as forms of PCD initiated by pathogen infection that are associated with inflammation and immune activation. While this paradigm has served the field well, numerous recent studies have highlighted cross-talk between these programs, challenging the idea that apoptosis, pyroptosis, and necroptosis are linear pathways with defined immunological outputs. Here, we discuss the emerging idea of cell death as a signaling network, considering connections between cell death pathways both as we observe them now and in their evolutionary origins. We also discuss the engagement and subversion of cell death pathways by pathogens, as well as the key immunological outcomes of these processes. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document