scholarly journals Purification and characterization of methyl-accepting chemotaxis protein methyltransferase I in Bacillus subtilis

1981 ◽  
Vol 199 (3) ◽  
pp. 795-805 ◽  
Author(s):  
A H J Ullah ◽  
G W Ordal

A methyltransferase that methylates one of the proteins involved in chemotactic adaptation to sensory stimuli in Bacillus subtilis was purified to homogeneity. The enzyme utilizes S-adenosylmethionine as donor for a methyl group that is transferred to a glutamate residue in a 69 000-mol.wt. membrane protein and also to a protein of 19 000 mol.wt. The molecular weights of the denatured enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and of the native enzyme by gel-filtration chromatography both show the protein to be a 44 000-mol.wt. monomer. Isoelectric focusing of the purified methyltransferase showed the protein to be a single species with isoelectric point pI 5.4. On the basis of a molecular weight of 44 000, the molar absorption coefficient at 262 nm of the enzyme is 10.9 x 10(4) M-1 . cm-1. The Km of the enzyme for S-adenosylmethionine is about 2 microM. The Ki for S-adenosylhomocysteine is about 0.2 microM. Ca2+ is a competitive inhibitor of methylation, with a Ki of 0.065 microM. The enzyme methylates membranes from the wild-type more efficiently than membranes isolated from a mutant strain defective in chemotaxis. The enzyme is unable to methylate Escherichia coli membranes.

2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


2003 ◽  
Vol 69 (9) ◽  
pp. 5089-5095 ◽  
Author(s):  
Juan-José R. Coque ◽  
María Luisa Álvarez-Rodríguez ◽  
Germán Larriba

ABSTRACT A novel S-adenosyl-l-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-3H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the M r was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28°C, with a pI of 4.9. The Km values for 2,4,6-trichlorophenol and SAM were 135.9 ± 12.8 and 284.1 ± 35.1 μM, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a Ki of 378.9 ± 45.4 μM. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu2+, Hg2+, Zn2+, and Ag+, and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.


1986 ◽  
Vol 64 (12) ◽  
pp. 1288-1293 ◽  
Author(s):  
Josefa M. Alonso ◽  
Amando Garrido-Pertierra

5-Carboxymethyl-2-hydroxymuconic semialdehyde (CHMSA) dehydrogenase in the 4-hydroxyphenylacetate meta-cleavage pathway was purified from Pseudomonas putida by gel filtration, anion-exchange, and affinity chromatographies. Sodium dodecyl sulfate – polyacrylamide gel electrophoresis analysis suggested an approximate tetrameric molecular weight of 200 000. The purified enzyme showed a pH optimum at 7.8. The temperature–activity relationship for the enzyme from 27 to 45 °C showed broken Arrhenius plots with an inflexion at 36–37 °C. Under standard assay conditions, the enzyme acted preferentially with NAD. It could also catalyze the reduction with NADP (which had a higher Km), at 18% of the rate observed for NAD. The following kinetic parameters were found: Km(NAD) = 20.0 ± 3.6 μM, Km(CHMSA) = 8.5 ± 1.8 μM, and Kd(enzyme–NAD complex) = 7.8 ± 2.0 μM. The product NADH acted as a competitive inhibitor against NAD.


1998 ◽  
Vol 180 (2) ◽  
pp. 388-394 ◽  
Author(s):  
Masahiro Furutani ◽  
Toshii Iida ◽  
Shigeyuki Yamano ◽  
Kei Kamino ◽  
Tadashi Maruyama

ABSTRACT A peptidyl prolyl cis-trans isomerase (PPIase) was purified from a thermophilic methanogen, Methanococcus thermolithotrophicus. The PPIase activity was inhibited by FK506 but not by cyclosporine. The molecular mass of the purified enzyme was estimated to be 16 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 42 kDa by gel filtration. The enzyme was thermostable, with the half-lives of its activity at 90 and 100°C being 90 and 30 min, respectively. The catalytic efficiencies (k cat/Km ) measured at 15°C for the peptidyl substrates,N-succinyl-Ala-Leu-Pro-Phe-p-nitroanilide andN-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, were 0.35 and 0.20 μM−1 s−1, respectively, in chymotrypsin-coupled assays. The purified enzyme was sensitive to FK506 and therefore was called MTFK (M. thermolithotrophicusFK506-binding protein). The MTFK gene (462 bp) was cloned from anM. thermolithotrophicus genomic library. The comparison of the amino acid sequence of MTFK with those of other FK506-binding PPIases revealed that MTFK has a 13-amino-acid insertion in the N-terminal region that is unique to thermophilic archaea. The relationship between the thermostable nature of MTFK and its structure is discussed.


1983 ◽  
Vol 59 (1) ◽  
pp. 81-103 ◽  
Author(s):  
R. Crossley ◽  
D.V. Holberton

Proteins from the axonemes and disc cytoskeleton of Giardia lamblia have been examined by sodium dodecyl sulphate/polyacrylamide gel electrophoresis. In addition to tubulin and the 30 X 10(3) molecular weight disc protein, at least 18 minor components copurify with the two major proteins in Triton-insoluble structures. The most prominent minor bands have the apparent molecular weights of 110 X 10(3), 95 X 10(3) and 81 X 10(3). Protein of 30 X 10(3) molecular weight accounts for about 20% of organelle protein on gels. In continuous 25 mM-Tris-glycine buffer it migrates mostly as a close-spaced doublet of polypeptides, which are here given the name giardins. Giardia tubulin and giardin have been purified by gel filtration chromatography in the presence of sodium dodecyl sulphate. Well-separated fractions were obtained that could be further characterized. Both proteins are heterogeneous when examined by isoelectric focusing. Five tubulin chains were detected by PAGE Blue 83 dye-binding after focusing in a broad-range ampholyte gel. Giardin is slightly less acidic than tubulin. On gels it splits into four major and four minor chains with isoelectric points in the pI range from 5.8 to 6.2. The amino acid composition of the giardin fraction has been determined, and compared to Giardia tubulin and a rat brain tubulin standard. Giardins are rich in helix-forming residues, particularly leucine. They have a low content of proline and glycine; therefore they may have extensive alpha-helical regions and be rod-shaped. As integral proteins of disc microribbons, giardins in vivo associate closely with tubulin. The properties of giardins indicate that in a number of respects - molecular size, charge, stoichiometry - their structural interaction with tubulin assemblies will be different from other tubulin-accessory protein copolymers studied in vitro.


1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 342-354 ◽  
Author(s):  
Beate Nicolaus ◽  
Yukiharu Sato ◽  
Ko Wakabayashi ◽  
Peter Böger

Abstract Thiadiazolidine-converting activity (isomerase), detected in a 45-75% ammonium sulfate precipitate from corn seedlings extracts, was purified by chromatography on hydroxyapatite and by anion exchange on Mono Q Sepharose. Two fractions 1 and 2 with isomerase activity were separated on Mono Q by combination of a stepwise elution and continuous salt gradient; fraction 2 eluting at higher salt concentrations was found the most active. Total activity could be enhanced by treatment of seedlings with naphthalic anhydride. Both fractions containing isomerase activity were further purified by glutathione-(GSH) agarose affinity chromatography and characterized by their specificity for different thiadiazolidines. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration revealed that the isomerase of fraction 2 consists either of a homodimer or a heterodimer of two proteins with apparent molecular weights of 28 and 31 kDa, respectively. The protein pattern as well as the strict dependence of activity on thiol groups (GSH or dithiothreitol) suggested a glutathione Stransferase (GST) catalyzing the thiadiazolidine conversion. Further evidence was obtained by measuring reactions specific for GSTs in both purified fractions, namely the conjugating activity for l-chloro-2,4-dinitrobenzene (CDNB ). atrazine and metazachlor. While no atrazine turnover was found, metazachlor and CDNB conjugation occurred rapidly. Both fractions differed in their activities to several GST substrates with fraction 2 being more effective in metazachlor but less active in C DN B conjugation. Inhibitors specific for GST-catalyzed reactions also inhibited thiadiazolidine conversion confirming that isomerizing activity is attributed to a GST form. We conclude that GST isoforms with different affinities towards thiadiazolidines have been isolated. CDNB activity, molecular weight, the protein pattern on SDS-PAGE as well as the amino acid sequence of one of its polypeptides suggest that fraction 1, less active in thiadiazolidine isomerization, is identical to GST I. The second peptide of this fraction was resistant to Edman degradation probably due to N-terminal blockage. The properties of the high isomerase activity found in fraction 2 are in agreement with characteristics of a GST previously termed as isoform II.


1998 ◽  
Vol 64 (2) ◽  
pp. 789-792 ◽  
Author(s):  
Giuliano Degrassi ◽  
Benedict C. Okeke ◽  
Carlo V. Bruschi ◽  
Vittorio Venturi

ABSTRACT Bacillus pumilus PS213 was found to be able to release acetate from acetylated xylan. The enzyme catalyzing this reaction has been purified to homogeneity and characterized. The enzyme was secreted, and its production was induced by corncob powder and xylan. Its molecular mass, as determined by gel filtration, is 190 kDa, while sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single band of 40 kDa. The isoelectric point was found to be 4.8, and the enzyme activity was optimal at 55°C and pH 8.0. The activity was inhibited by most of the metal ions, while no enhancement was observed. The Michaelis constant (Km ) andV max for α-naphthyl acetate were 1.54 mM and 360 μmol min−1 mg of protein−1, respectively.


1978 ◽  
Vol 176 (1) ◽  
pp. 283-294 ◽  
Author(s):  
J G Heathcote ◽  
C H J Sear ◽  
M E Grant

1. Isolated rat lens capsules synthesized hydroxy[3H]proline-containing polypeptides when incubated with [3H]proline. 2. The collagenous polypeptides synthesized during a 2 h incubation were analyzed by both gel-filtration chromatography and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and shown to have an apparent mol.wt. of approx. 180,000. 3. No evidence was obtained for conversion of these polypeptides into a lower-molecular-weight species in experiments where capsules were labelled for 2 h and chased with non-radioactive proline for up to 22 h. However, a time-dependent incorporation of the 180,000-mol.wt. species into a larger collagenous component was observed and this could be prevented by the inclusion of beta-aminopropionitrile in the incubation medium. 4. The radioactive components synthesized by the capsules correspond to subunits of the intact lens capsule and the direct incorporation of the polypeptide of mol.wt. 180,000 into deoxycholate-insoluble basement membrane was demonstrated.


1983 ◽  
Vol 209 (2) ◽  
pp. 561-564 ◽  
Author(s):  
A R Orlando ◽  
P Ade ◽  
D Di Maggio ◽  
C Fanelli ◽  
L Vittozzi

A new alpha-amylase (EC 3.2.1.1) from Bacillus subtilis was purified by affinity chromatography. The molecular weight of the purified enzyme, estimated from sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, was 93000, which is very different from the molecular weights of two well-characterized amylases from B. subtilis. Electrofocusing showed an isoelectric point of 5. Amylase shows a broad maximum of activity between pH 6 and 7; maximal inhibition of enzyme by wheat-protein alpha-amylase inhibitors is displayed at pH 7.


Sign in / Sign up

Export Citation Format

Share Document