Transcriptional regulation of the human cystathionine β-synthase −1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3

2001 ◽  
Vol 357 (1) ◽  
pp. 97-105 ◽  
Author(s):  
Yubin GE ◽  
Mark A. KONRAD ◽  
Larry H. MATHERLY ◽  
Jeffrey W. TAUB

Cystathionine β-synthase (CBS) catalyses the condensation of serine and homocysteine to form cystathionine, an intermediate step in the synthesis of cysteine. Human CBS encodes five distinct 5′ non-coding exons, the most frequent termed CBS −1a and CBS −1b, each transcribed from its own unique GC-rich TATA-less promoter. The minimal transcriptional region (−3792 to −3667) of the CBS −1b promoter was defined by 5′- and 3′-deletions, and transient transfections of reporter gene constructs in HepG2 cells, characterized by CBS transcription exclusively from the −1b promoter. Included in this 125bp region are 3 GC-boxes (termed GC-a, GC-b and GC-c), an inverted CAAT-box and an E-box. By gel-shift and supershift assays, binding of specificity protein (Sp)1 and Sp3 to the GC-box elements, upstream stimulatory factor 1 (USF-1) to the E-box, and both nuclear factor (NF)-Y and an NF-1-like factor to the CAAT box could be demonstrated. By transient trans fections and reporter gene assays in HepG2 and Drosophila SL2 cells, a functional interplay was indicated between NF-Y binding to the CAAT-box, or between USF-1 binding to the E-box, and Sp1/Sp3 binding to the GC-box elements. In SL2 cells, NF-Y and Sp1/Sp3 were synergistic. Furthermore, both Sp1 and the long Sp3 isoform transactivated the CBS −1b minimal promoter; however, the short Sp3 isoforms were potent repressors. These results may explain the cell- or tissue-specific regulation of CBS transcription, and clarify the bases for alterations in CBS gene expression in human disease and Down's syndrome.

2012 ◽  
Vol 446 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Bohao Chen ◽  
Rona Hsu ◽  
Zhenping Li ◽  
Paul C. Kogut ◽  
Qingxia Du ◽  
...  

Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp −118 to −113 in mice; bp −164 to −159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5′-CACGTG-3′), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)–PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.


Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3058-3064 ◽  
Author(s):  
Sam J. P. Gobin ◽  
Paula Biesta ◽  
Peter J. Van den Elsen

Abstract β2-Microglobulin (β2m) is a chaperone of major histocompatibility complex (MHC) class I (–like) molecules that play a central role in antigen presentation, immunoglobulin transport, and iron metabolism. It is therefore of importance that β2m is adequately expressed in cells that perform these functions, such as hematopoietic cells. In this study, we investigated the transcriptional regulation of β2m in lymphoid and myeloid cell lines through a promoter containing a putative E box, Ets/interferon-stimulated response element (ISRE), and κB site. Here we show that upstream stimulatory factor 1 (USF1) and USF2 bind to the E box and regulate β2m transactivation. The nuclear factor κB (NF-κB) subunits p50 and p65 bind to the κB box and p65 transactivates β2m. Interferon regulatory factor 1 (IRF1), IRF2, IRF4, and IRF8, but not PU.1, bind to the Ets/ISRE, and IRF1 and IRF3 are strong transactivators of β2m. Together, all 3 boxes are important for the constitutive and cytokine-induced levels of β2m expression in lymphoid and myeloid cell types. As such, β2m transactivation is under the control of important transcriptional pathways, which are activated during injury, infection, and inflammation.


2004 ◽  
Vol 384 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Tomomi FURIHATA ◽  
Masakiyo HOSOKAWA ◽  
Tetsuo SATOH ◽  
Kan CHIBA

Mouse carboxylesterase 2 (mCES2), a microsomal acylcarnitine hydrolase, is thought to play some important roles in fatty acid (ester) metabolism, and it is therefore thought that the level of transcription of the mCES2 gene is under tight control. Examination of the tissue expression profiles revealed that mCES2 is expressed in the liver, kidney, small intestine, brain, thymus, lung, adipose tissue and testis. When the mCES2 promoter was cloned and characterized, it was revealed that Sp1 (specificity protein 1) and Sp3 could bind to a GC box, that USF (upstream stimulatory factor) 1 could bind to an E (enhancer) box, and that Sp1 could bind to an NFκB (nuclear factor κB) element in the mCES2 promoter. Co-transfection assays showed that all of these transcription factors contributed synergistically to transactivation of the mCES2 promoter. Taken together, our results indicate that Sp1, Sp3 and USF1 are indispensable factors for transactivation of the mCES2 gene promoter. To our knowledge, this is the first study in which transcription factors that interact with a CES2 family gene have been identified. The results of the present study have provided some clues for understanding the molecular mechanisms regulating mCES2 gene expression, and should be useful for studies aimed at elucidation of physiological functions of mCES2.


2007 ◽  
Vol 405 (2) ◽  
pp. 359-367 ◽  
Author(s):  
Thirajit Boonsaen ◽  
Pinnara Rojvirat ◽  
Kathy H. Surinya ◽  
John C. Wallace ◽  
Sarawut Jitrapakdee

PC (pyruvate carboxylase) plays a crucial role in intermediary metabolism including glucose-induced insulin secretion in pancreatic islets. In the present study, we identified two regions of the 1.2 kb distal promoter, the −803/−795 site and the −408/−403 E-box upstream of the transcription start site, as the important cis-acting elements for transcriptional activation of the luciferase reporter gene. Site-directed mutagenesis of either one of these sites in the context of this 1.2 kb promoter fragment, followed by transient transfections in the insulinoma cell line, INS-1, abolished reporter activity by approx. 50%. However, disruption of either the −803/−795 or the −408/−403 site did not affect reporter gene activity in NIH 3T3 cells, suggesting that this promoter fragment is subjected to cell-specific regulation. The nuclear proteins that bound to these −803/−795 and −408/−403 sites were identified by gel retardation assays as HNF3β (hepatocyte nuclear factor 3β)/Foxa2 (forkhead/winged helix transcription factor box2) and USFs (upstream stimulatory factors), USF1 and USF2, respectively. Chromatin immunoprecipitation assays using antisera against HNF3β/Foxa2, USF1 and USF2 demonstrated that endogenous HNF3β/Foxa2 binds to the −803/−795 Foxa2 site, and USF1 and USF2 bind to the −408/−403 E-box respectively in vivo, consistent with the gel retardation assay results. Although there are weak binding sites located at regions −904 and −572 for PDX1 (pancreatic duodenal homeobox-1), a transcription factor that controls expression of β-cell-specific genes, it did not appear to regulate PC expression in INS-1 cells in the context of the 1.2 kb promoter fragment. The results presented here show that Foxa2 and USFs regulate the distal promoter of the rat PC gene in a cell-specific manner.


2004 ◽  
Vol 383 (2) ◽  
pp. 249-257 ◽  
Author(s):  
Mingjun LIU ◽  
Johnathan R. WHETSTINE ◽  
Scott G. PAYTON ◽  
Yubin GE ◽  
Robin M. FLATLEY ◽  
...  

The hRFC (human reduced folate carrier) is ubiquitously but differentially expressed in human tissues and its levels are regulated by up to seven non-coding regions (A1, A2, A, B, C, D and E) and at least four promoters. For the hRFC-B basal promoter, regulation involves binding of Sp (specificity protein) transcription factors to a critical GC-box. By transiently transfecting HT1080 cells with 5′- and 3′-deletion constructs spanning 1057 bp of upstream sequence, a transcriptionally important region was localized to 158 bp flanking the transcriptional start sites. By gel shift and chromatin immunoprecipitation assays, USF (upstream stimulatory factor), Sp1 and Ikaros-related proteins were bound to consensus elements (one E-box, two GC-box and three Ikaros) within this region. The functional importance of these elements was confirmed by transient tranfections of HT1080 cells with hRFC-B reporter constructs in which they were mutated, and by co-transfections of Drosophila Mel-2 cells with wild-type hRFC-B promoter and expression constructs for USF1, USF2a, Sp1 and Ikaros 2 and 8. Both USF1 and Sp1 proteins transactivated the hRFC-B promoter. Sp1 combined with USF1 resulted in a synergistic transactivation. Identical results were obtained with USF2a. Ikaros 2 was a repressor of hRFC-B promoter activity whose effects were partly reversed by the dominant-negative Ikaros 8. In HT1080 cells, transfection with Ikaros 2 decreased endogenous hRFC-B transcripts, whereas USF1 and Sp1 increased transcript levels. Ikaros 2 also decreased reporter gene activity and levels of acetylated chromatin associated with the endogenous promoter. Collectively, these results identify transcriptionally important regions in the hRFC-B promoter that include multiple GC-box, Ikaros and E-box elements. Our results also suggest that co-operative interactions between transcription factors Sp1 and USF are essential for high-level hRFC-B transactivation and imply that these effects are modulated by the family of Ikaros proteins and by histone acetylation.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 492-500 ◽  
Author(s):  
Naotetsu Kanamoto ◽  
Tetsuya Tagami ◽  
Yoriko Ueda-Sakane ◽  
Masakatsu Sone ◽  
Masako Miura ◽  
...  

Type 1 iodothyronine deiodinase (D1), a selenoenzyme that catalyzes the bioactivation of thyroid hormone, is expressed mainly in the liver. Its expression and activity are modulated by several factors, but the precise mechanism of its transcriptional regulation remains unclear. In the present study, we have analyzed the promoter of human D1 gene (hDIO1) to identify factors that prevalently increase D1 activity in the human liver. Deletion and mutation analyses demonstrated that a forkhead box (FOX)A binding site and an E-box site within the region between nucleotides −187 and −132 are important for hDIO1 promoter activity in the liver. EMSA demonstrated that FOXA1 and FOXA2 specifically bind to the FOXA binding site and that upstream stimulatory factor (USF) specifically binds to the E-box element. Overexpression of FOXA2 decreased hDIO1 promoter activity, and short interfering RNA-mediated knockdown of FOXA2 increased the expression of hDIO1 mRNA. In contrast, overexpression of USF1/2 increased hDIO1 promoter activity. Short interfering RNA-mediated knockdown of FOXA1 decreased the expression of hDIO1 mRNA, but knockdown of both FOXA1 and FOXA2 restored it. The response of the hDIO1 promoter to USF was greatly attenuated in the absence of FOXA1. Taken together, these results indicate that a balance of FOXA1 and FOXA2 expression modulates hDIO1 expression in the liver.


Sign in / Sign up

Export Citation Format

Share Document