Promoter I of the ovine acetyl-CoA carboxylase-α gene: an E-box motif at −114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes

2001 ◽  
Vol 359 (2) ◽  
pp. 273-284 ◽  
Author(s):  
Maureen T. TRAVERS ◽  
Amanda J. VALLANCE ◽  
Helen T. GOURLAY ◽  
Clare A. GILL ◽  
Izabella KLEIN ◽  
...  

Acetyl-CoA carboxylase-α (ACC-α) plays a central role in co-ordinating de novo fatty acid synthesis in animal tissues. We have characterized the regulatory region of the ovine ACC-α gene. Three promoters, PI, PII and PIII, are dispersed throughout 50kb of genomic DNA. Expression from PI is limited to adipose tissue and liver. Sequence comparison of the proximal promoters of ovine and mouse PIs demonstrates high nucleotide identity and that they are characterized by a TATA box at −29, C/EBP (CCAAT enhancer-binding protein)-binding motifs and multiple E-box motifs. A 4.3kb ovine PI-luciferase reporter construct is insulin-responsive when transfected into differentiated ovine adipocytes, whereas when this construct is transfected into ovine preadipocytes and HepG2 cells the construct is inactive and is not inducible by insulin. By contrast, transfection of a construct corresponding to 132bp of the proximal promoter linked to a luciferase reporter is active and inducible by insulin in all three cell systems. Insulin signalling to the −132bp construct in differentiated ovine adipocytes involves, in part, an E-box motif at −114. Upstream stimulatory factor (USF)-1 and USF-2, but not sterol regulatory element-binding protein 1 (SREBP-1), are major components of protein complexes that bind this E-box motif. Activation of the 4.3kb PI construct in differentiated ovine adipocytes is associated with endogenous expression of PI transcripts throughout differentiation; PI transcripts are not detectable by RNase-protection assay in ovine preadipocytes, HepG2 cells or 3T3-F442A adipocytes. These data indicate the presence of repressor motifs in PI that are required to be de-repressed during adipocyte differentiation to allow induction of the promoter by insulin.

2012 ◽  
Vol 446 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Bohao Chen ◽  
Rona Hsu ◽  
Zhenping Li ◽  
Paul C. Kogut ◽  
Qingxia Du ◽  
...  

Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp −118 to −113 in mice; bp −164 to −159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5′-CACGTG-3′), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)–PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.


2002 ◽  
Vol 29 (1) ◽  
pp. 73-88 ◽  
Author(s):  
J Mao ◽  
AJ Molenaar ◽  
TT Wheeler ◽  
HM Seyfert

Activity of acetyl-CoA carboxylase (ACC)-alpha is rate limiting for de novo synthesis of fatty acids. The encoding gene is expressed by three different promoters. We characterized promoter III (PIII) from cow, previously only known from sheep. Quantitation of transcripts by RNAse protection assays and real time PCR revealed that PIII is primarily expressed and strongly induced ( approximately 28-fold) in the lactating mammary gland. PIII transcripts are expressed in mammary epithelial cells (MEC) as shown by in situ hybridization. A 2999 bp segment of the PIII promoter conferred prolactin and dexamethasone inducibility to a luciferase reporter gene in stably transfected mouse MEC cells. Lactogenic induction was abolished if a unique signal transducer and activator of transcription (STAT)-binding site at position -797 was inactivated by two point mutations. An oligonucleotide probe harboring this STAT-site specifically bound nuclear proteins from the lactating mammary gland. Binding was abolished by those two point mutations and super-shift analyses showed that STAT5A factors are present in this complex. Hence, prolactin, acting through STAT5, contributes to the activation of ACC expression in the milk producing cells of the lactating mammary gland. We discuss that STAT5 might be important in determining the milk composition by coordinating fatty acid and protein synthesis during lactation.


2003 ◽  
Vol 375 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Michael C. BARBER ◽  
Amanda J. VALLANCE ◽  
Helen T. KENNEDY ◽  
Maureen T. TRAVERS

ACC-α (acetyl-CoA carboxylase-α), a key regulator of fatty-acid metabolism, is encoded by mRNAs transcribed from three promoters, PI, PII and PIII, in the ovine genome. Enhanced expression of transcripts encoded by PIII in mammary gland during lactation is associated with alterations in chromatin structure that result in the detection of two DNase I hypersensitive sites, upstream of the start site. The most proximal site, located between −190 and −10, is characterized by the presence of an inverted-CCAAT box, C2 at −167, and E-boxes, E1 and E2, at −151 and −46. Deletion of these motifs, which bind nuclear factor-Y and upstream stimulatory factors respectively in gel-shift assays, attenuates the activity of luciferase reporter constructs in transfected cells. Chromatin immunoprecipitation demonstrated that these transcription factors were associated with PIII in vivo in both lactating and non-lactating mammary tissues. The basic helix–loop–helix-leucine zipper transcription factor, SREBP-1 (sterol-regulated-element-binding protein-1), transactivated PIII reporter constructs in transfected HC11 mammary cells, and this was dependent on the presence of E1, but not on C2 or E2. SREBP-1 was only associated with PIII in chromatin from lactating animals, which was coincident with a 4-fold increase in the precursor (125 kDa) form of SREBP-1 in microsomes and the appearance of the mature form (68 kDa) in the nucleus. SREBP-1 motifs are also present in the proximal region of PII, which is also induced in lactation. This indicates that SREBP-1 is a major developmental regulator of the programme of lipid synthesis de novo in the lactating mammary gland.


2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Lidia A. Daimiel ◽  
María E. Fernández-Suárez ◽  
Sara Rodríguez-Acebes ◽  
Lorena Crespo ◽  
Miguel A. Lasunción ◽  
...  

DHCR24 (3β-hydroxysterol Δ24-reductase) catalyses the reduction of the C-24 double bond of sterol intermediates during cholesterol biosynthesis. DHCR24 has also been involved in cell growth, senescence and cellular response to oncogenic and oxidative stress. Despite its important roles, little is known about the transcriptional mechanisms controlling DHCR24 gene expression. We analysed the proximal promoter region and the cholesterol-mediated regulation of DHCR24. A putative SRE (sterol-regulatory element) at −98/−90 bp of the transcription start site was identified. Other putative regulatory elements commonly found in SREBP (SRE-binding protein)-targeted genes were also identified. Sterol responsiveness was analysed by luciferase reporter assays of approximately 1 kb 5′-flanking region of the human DHCR24 gene in HepG2 and SK-N-MC cells. EMSAs (electrophoretic mobility-shift assays) and ChIP (chromatin immunoprecipitation) assays demonstrated cholesterol-dependent recruitment and binding of SREBPs to the putative SRE. Given the presence of several CACCC-boxes in the DHCR24 proximal promoter, we assessed the role of KLF5 (Krüppel-like factor 5) in androgen-regulated DHCR24 expression. DHT (dihydrotestosterone) increased DHCR24 expression synergistically with lovastatin. However, DHT was unable to activate the DHCR24 proximal promoter, whereas KLF5 did, indicating that this mechanism is not involved in the androgen-induced stimulation of DHCR24 expression. The results of the present study allow the elucidation of the mechanism of regulation of the DHCR24 gene by cholesterol availability and identification of other putative cis-acting elements which may be relevant for the regulation of DHCR24 expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2437-2437
Author(s):  
Ying Cai ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract The multifunctional LIM domain-binding protein Ldb1 is important in multiple developmental programs, including hematopoiesis. An evolutionarily conserved family of proteins with single-stranded DNA-binding activity, the SSBPs, has been shown to act as Ldb1 partners and augment its biological actions. We recently established that Ssbp2 and Ssbp3 were components of an E-box-GATA DNA-binding complex in murine erythroid progenitors containing the LIM-only protein Lmo2 and transcription factors Tal1, E2A, and Gata1 and showed these SSBPs stimulated E box-GATA DNA-binding activity and inhibited Ldb1 ubiquitination and subsequent proteasomal degradation (Genes & Dev.21:942–955, 2007). As its SSBP interaction domain (Ldb1/Chip conserved domain or LCCD) is adjacent to Ldb1’s N-terminal dimerization domain (DD), we sought to determine whether SSBP binding affected Ldb1 dimerization. To investigate, the Ldb1 coding region was fused to the DNA-binding domain of the yeast transcription factor GAL4 (GAL4DBD) and in a second construct to the activation domain of herpesvirus VP16 (VP16AD). These fusion proteins were then expressed in mammalian cells with a luciferase reporter linked to a promoter with iterated GAL4 binding sites. Luciferase activity became detectable with coexpression of the VP16AD-Ldb1 and GAL4DBD-Ldb1 fusions, presumably from Ldb1 dimerization, which increased markedly with simultaneous expression of SSBP2. In contrast, SSBP2 (ΔLUFS) and Ldb1 (ΔLCCD) mutants incapable of interacting with Ldb1 and SSBPs, respectively, were inactive, suggesting that SSBP2 augmentation of Ldb1 dimerization involved direct protein-protein interactions. To exclude an effect of SSBP2 on turnover of Ldb1 fusion proteins, radiolabeled full-length Ldb1 and SSBP3 were prepared by in vitro transcription/translation, mixed, and subjected to chemical crosslinking. Addition of the crosslinker bis(sulfosuccinimidyl)-suberate (BS3) to Ldb1, but not SSBP3, led to the appearance of a radiolabeled protein with mobility in denaturing polyacrylamide gels approximately twice that of Ldb1, consistent with an Ldb1 homodimer. When SSBP3 and Ldb1 were mixed together and crosslinked, a dose-related increase was noted in a more retarded species predicted to contain two molecules each of Ldb1 and SSBP3, together with a decrease in monomeric Ldb1. Finally, two well-characterized dimerization-defective Ldb1 mutants, Ldb1(200–375) and Ldb1(50–375), failed to support the formation of the higher molecular weight species or to homodimerize. Thus, the SSBPs promoted assembly of ternary complexes incorporating both SSBP and Ldb1 in a manner dependent on Ldb1 dimerization. The failure to observe Ldb1-SSBP heterodimers in cross-linking experiments suggests, further, that the SSBPs interacted with preformed Ldb1 dimers. In summary, either through an allosteric effect on Ldb1’s DD or by altering the equilibrium between monomeric and dimeric species, the SSBPs promote Ldb1 oligomerization. Together with inhibition of Ldb1 ubiquitination and turnover, this would serve to augment Ldb1 function.


2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 183-183
Author(s):  
Junyao Xu ◽  
Qingqi Hong ◽  
Chuanchao He ◽  
Jie Wang

183 Background: SET and MYND Domain-Containing Protein 3 (SMYD3) is frequently overexpressed in hepatocellular carcinoma (HCC) exhibiting increased malignant phenotypes. It has also been known that the hepatitis B virus x protein (HBx) is strongly associated with HCC development and progression. Although overexpression of both proteins is related to HCC, the relationship between the two has not been well studied. Methods: Immunohistochemical staining was used to detect the expression of HBx and SMYD3 in HCC tumor tissues. HBx gene transfection, RNAi, and histone methyltransferase(H3-K4) activity assay were performed to reveal the transcrpitionally activation of HBx on functional SMYD3 gene expression. Chromatin immunoprecipitation (ChIP), Co-immunoprecipitation (Co-IP), Electrophoretic mobility shift assay (EMSA) were applied to investigate the underlying mechanism. Dual-luciferase reporter assay was used to search for the HBx responsive cis-element of SMYD3 gene. Results: Immunohistochemistry identified the positive correlation between HBx and SMYD3 expression in 42 HCC tissues. Up-regulation of HBx on SMYD3 expression was validated through experiments involving overexpression or knock-down of HBx in different HCC cell lines. And up-regulated SMYD3 is functionally active as histone methyltransferase. Next we found that HBx transcriptionally regulated SMYD3 gene expression by interacting with RNA polymerase IIand altering its binding site to a proximal promoter region(SD2) from a distant promoter region(SD6) of SMYD3. Truncated and mutant reporter assays revealed that the cis-element mapped in -178~-203bp in SMYD3 promotor is responsive for HBx-transactivation. And this 25bp cis-element contains a E-box 3 unit, which is a binding site for the transcriptional factor Neurogenic differentiation 1(NeuroD1). EMSA and Chip showed that HBx increased NeuroD1 binding to SMYD3 proximal promotor, however transcient expression of antisense NeuroD1 abolished HBx-induced SMYD3 expression. Conclusions: HBx transcriptionally up-regulates SMYD3 and that this process is mediated by NeuroD1 through binding to the E-box 3 site of SMYD3 promotor.


Endocrinology ◽  
2012 ◽  
Vol 153 (1) ◽  
pp. 492-500 ◽  
Author(s):  
Naotetsu Kanamoto ◽  
Tetsuya Tagami ◽  
Yoriko Ueda-Sakane ◽  
Masakatsu Sone ◽  
Masako Miura ◽  
...  

Type 1 iodothyronine deiodinase (D1), a selenoenzyme that catalyzes the bioactivation of thyroid hormone, is expressed mainly in the liver. Its expression and activity are modulated by several factors, but the precise mechanism of its transcriptional regulation remains unclear. In the present study, we have analyzed the promoter of human D1 gene (hDIO1) to identify factors that prevalently increase D1 activity in the human liver. Deletion and mutation analyses demonstrated that a forkhead box (FOX)A binding site and an E-box site within the region between nucleotides −187 and −132 are important for hDIO1 promoter activity in the liver. EMSA demonstrated that FOXA1 and FOXA2 specifically bind to the FOXA binding site and that upstream stimulatory factor (USF) specifically binds to the E-box element. Overexpression of FOXA2 decreased hDIO1 promoter activity, and short interfering RNA-mediated knockdown of FOXA2 increased the expression of hDIO1 mRNA. In contrast, overexpression of USF1/2 increased hDIO1 promoter activity. Short interfering RNA-mediated knockdown of FOXA1 decreased the expression of hDIO1 mRNA, but knockdown of both FOXA1 and FOXA2 restored it. The response of the hDIO1 promoter to USF was greatly attenuated in the absence of FOXA1. Taken together, these results indicate that a balance of FOXA1 and FOXA2 expression modulates hDIO1 expression in the liver.


Sign in / Sign up

Export Citation Format

Share Document