scholarly journals Biomarkers as predictive tools to test the in vivo anti-sarcoptic mange activity of propolis in naturally infested rabbits

2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Dina M. Metwally ◽  
Ebtesam M. Al-Olayan ◽  
Reem A. Alshalhoop ◽  
Shatha A. Eisa

The present study was designed to investigate the use of specific biomarkers, such as albumin, serum total protein, aspartate amino transferase (AST), globulin, alanine amino transferase (ALT), serum cortisol and alkaline phosphatase (ALP), as predictive tools for sarcoptic mange in rabbits. A total of 40 naturally infested rabbits were equally divided into four groups.Thirty infested rabbits were administered with three different treatments (propolis,ivermectin, and propolis with ivermectin) and were compared to10 infested un-treated rabbits. The impact of treatment was assessed via microscopic examination of skin scrapings, clinical signs, and blood measurements relating to the liver. The present study demonstrated that topical application of 10% propolis ointment resulted in complete recovery from clinical signs and complete absence of mites based on microscopic examination after 10–15 days of treatment. Moreover, AST, ALP, ALT, and cortisol were determined to be acceptable biomarkers to track the response of diseased rabbits to the therapeutic use of propolis.

Blood ◽  
2004 ◽  
Vol 104 (5) ◽  
pp. 1273-1280 ◽  
Author(s):  
Ken Kuramoto ◽  
Dean Follman ◽  
Peiman Hematti ◽  
Stephanie Sellers ◽  
Mikko O. Laukkanen ◽  
...  

Abstract An understanding of the number and contribution of individual pluripotent hematopoietic stem cells (HSCs) to the formation of blood lineages has important clinical implications for gene therapy and stem cell transplantation. We have been able to efficiently mark rhesus macaque long-term repopulating stem and progenitor cells with retroviral vectors, and track their in vivo contributions to hematopoiesis using the linear amplification mediated–polymerase chain reaction (LAM-PCR) technique of insertion site analysis. We assessed the impact of busulfan on contributions of individual retrovirally marked clones to hematopoiesis. There were 2 macaques that received transplants of retrovirally transduced CD34+ cells 2 years previously that were then treated with 4 mg/kg busulfan. Despite only transient and mild suppression of peripheral blood counts, the numbers of individual stem/progenitor clones contributing to granulocyte production decreased dramatically, by 80% in the first monkey and by 60% in the second monkey. A similar impact was seen on clones contributing to T cells. The clone numbers recovered gradually back toward baseline by 5 months following busulfan in the first monkey and by 3 months in the second monkey, and have remained stable for more than one year in both animals. Tracking of individual clones with insertion-site–specific primers suggested that clones contributing to hematopoiesis prior to busulfan accounted for the majority of this recovery, but that some previously undetected clones began to contribute during this recovery phase. These results indicate that even low-dose busulfan significantly affects stem and progenitor cell dynamics. The clonal diversity of hematopoiesis was significantly decreased after even a single, clinically well-tolerated dose of busulfan, with slow but almost complete recovery over the next several months, suggesting that true long-term repopulating stem cells were not permanently deleted. However, the prolonged period of suppression of many clones suggests that transplanted HSCs may have a marked competitive advantage if they can engraft and proliferate during this time period, and supports the use of this agent in nonmyeloablative regimens


2020 ◽  
Author(s):  
Laura Rohmeier ◽  
Wolfram Petzl ◽  
Mirja Koy ◽  
Tordis Eickhoff ◽  
Alina Hülsebusch ◽  
...  

Abstract Background: In dairy herds, mastitis causes detrimental economic losses. Genetic selection offers a sustainable tool to select animals with reduced susceptibility towards postpartum diseases. Studying underlying mechanisms is important to assess the physiological processes that cause differences between selected haplotypes. Therefore, the objective of this study was to establish an in vivo infection model to study the impact of selecting for alternative paternal haplotypes in a particular genomic region on cattle chromosome 18 for mastitis susceptibility under defined conditions in dairy uniparous cows. Results: At the start of pathogen challenge, no significant differences between the favorable (Q) and unfavorable (q) haplotypes were detected. Intramammary infection (IMI) with Staphylococcus aureus 1027 (S. aureus, n = 24, 96 h) or Escherichia coli 1303 (E. coli, n = 12, 24 h) was successfully induced in all uniparous cows. This finding was confirmed by clinical signs of mastitis and repeated recovery of the respective pathogen from milk samples of challenged quarters in each animal. After S. aureus challenge, Q-uniparous cows showed lower somatic cell counts 24 h and 36 h after challenge (P < 0.05), lower bacterial shedding in milk 12 h after challenge (P < 0.01) and a minor decrease in total milk yield 12 h and 24 h after challenge (P < 0.01) compared to q-uniparous cows. Conclusion: An in vivo infection model to study the impact of genetic selection for mastitis susceptibility under defined conditions in dairy uniparous cows was successfully established and revealed significant differences between the two genetically selected haplotype groups. This result might explain their differences in susceptibility towards IMI. These clinical findings form the basis for further in-depth molecular analysis to clarify the underlying genetic mechanisms for mastitis resistance.


2014 ◽  
Vol 1 (3) ◽  
pp. 3-7
Author(s):  
O. Zhukorskyy ◽  
O. Hulay

Aim. To estimate the impact of in vivo secretions of water plantain (Alisma plantago-aquatica) on the popula- tions of pathogenic bacteria Erysipelothrix rhusiopathiae. Methods. The plants were isolated from their natural conditions, the roots were washed from the substrate residues and cultivated in laboratory conditions for 10 days to heal the damage. Then the water was changed; seven days later the selected samples were sterilized using fi lters with 0.2 μm pore diameter. The dilution of water plantain root diffusates in the experimental samples was 1:10–1:10,000. The initial density of E. rhusiopathiae bacteria populations was the same for both experimental and control samples. The estimation of the results was conducted 48 hours later. Results. When the dilution of root diffusates was 1:10, the density of erysipelothrixes in the experimental samples was 11.26 times higher than that of the control, on average, the dilution of 1:100 − 6.16 times higher, 1:1000 – 3.22 times higher, 1:10,000 – 1.81 times higher, respectively. Conclusions. The plants of A. plantago-aquatica species are capable of affecting the populations of E. rhusiopathiae pathogenic bacteria via the secretion of biologically active substances into the environment. The consequences of this interaction are positive for the abovementioned bacteria, which is demon- strated by the increase in the density of their populations in the experiment compared to the control. The intensity of the stimulating effect on the populations of E. rhusiopathiae in the root diffusates of A. plantago-aquatica is re- ciprocally dependent on the degree of their dilution. The investigated impact of water plantain on erysipelothrixes should be related to the topical type of biocenotic connections, the formation of which between the test species in the ecosystems might promote maintaining the potential of natural focus of rabies. Keywords: Alisma plantago-aquatica, in vivo secretions, Erysipelothrix rhusiopathiae, population density, topical type of connections.


Author(s):  
Hossam Ebaid ◽  
Mohamed Habila ◽  
Iftekhar Hassan ◽  
Jameel Al-Tamimi ◽  
Mohamed S. Omar ◽  
...  

Background: Hepatotoxicity remains an important clinical challenge. Hepatotoxicity observed in response to toxins and hazardous chemicals may be alleviated by delivery of the curcumin in silver nanoparticles (AgNPs-curcumin). In this study, we examined the impact of AgNPs-curcumin in a mouse model of carbon tetrachloride (CCl4)-induced hepatic injury. Methods: Male C57BL/6 mice were divided into three groups (n=8 per group). Mice in group 1 were treated with vehicle control alone, while mice in Group 2 received a single intraperitoneal injection of 1 ml/kg CCl4 in liquid paraffin (1:1 v/v). Mice in group 3 were treated with 2.5 mg/kg AgNPs-curcumin twice per week for three weeks after the CCl4 challenge. Results: Administration of CCL4 resulted in oxidative dysregulation, including significant reductions in reduced glutathione and concomitant elevations in the level of malondialdehyde (MDA). CCL4 challenge also resulted in elevated levels of serum aspartate transaminase (AST) and alanine transaminase (ALT); these findings were associated with the destruction of hepatic tissues. Treatment with AgNPs-curcumin prevented oxidative imbalance, hepatic dysfunction, and tissue destruction. A comet assay revealed that CCl4 challenge resulted in significant DNA damage as documented by a 70% increase in nuclear DNA tail-length; treatment with AgNPs-curcumin inhibited the CCL4-mediated increase in nuclear DNA tail-length by 34%. Conclusion: Administration of AgNPs-curcumin resulted in significant antioxidant activity in vivo. This agent has the potential to prevent the hepatic tissue destruction and DNA damage that results from direct exposure to CCL4.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathaniel B. Bone ◽  
Eugene J. Becker ◽  
Maroof Husain ◽  
Shaoning Jiang ◽  
Anna A. Zmijewska ◽  
...  

AbstractMetabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2−/− murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bin Wang ◽  
Peiyan Hua ◽  
Ruimin Wang ◽  
Jindong Li ◽  
Guangxin Zhang ◽  
...  

Abstract Objective Esophageal squamous cell carcinoma (ESCC) is featured by early metastasis and late diagnosis. MicroRNA-301 (miR-301) is known to participate in diverse cancers. Nevertheless, effects of miR-301 on ESCC remain unexplored. Thus, we aim to explore the role of miR-301 in ESCC progression. Methods Expression of miR-301 and phosphatase and tensin homologue (PTEN) in ESCC tissues and cell lines was assessed. Next, the screened cells were treated with altered miR-301 or PTEN oligonucleotide and plasmid, and then, the colony formation ability, cell viability, migration, invasion, cell cycle distribution and apoptosis of ESCC cells were assessed. Moreover, tumor growth and microvessel density (MVD) were also assessed, and the targeting relationship between miR-301 and PTEN was affirmed. Results MiR-301 was upregulated, and PTEN was downregulated in ESCC tissues and cells. KYSE30 cells and Eca109 cells were selected for functional assays. In KYSE30 cells, inhibited miR-301 or overexpressed PTEN suppressed cell malignant behaviors, and silenced PTEN eliminated the impact of miR-301 inhibition on ESCC progression. In Eca109 cells, miR-301 overexpression or PTEN inhibition promoted cell malignant behaviors, and PTEN overexpression reversed the effects of miR-301 elevation on ESCC progression. The in vivo assay revealed that miR-301 inhibition or PTEN overexpression repressed ESCC tumor growth and MVD, and miR-301 elevation or PTEN reduction had contrary effects. Moreover, PTEN was targeted by miR-301. Conclusion Taken together, results in our study revealed that miR-301 affected cell growth, metastasis and angiogenesis via regulating PTEN expression in ESCC.


Sign in / Sign up

Export Citation Format

Share Document