Breathing Patterns and Regional Ventilation Distribution in Tetraplegic Patients and in Normal Subjects

1972 ◽  
Vol 42 (2) ◽  
pp. 117-128 ◽  
Author(s):  
B. Bake ◽  
A. R. Fugl-Meyer ◽  
G. Grimby

1. The regional distribution of ventilation was studied with 133Xe techniques in the sitting position in six patients with complete traumatic transection of the cervical spinal cord, 3–40 months after the lesion, and in four normal subjects. The relative contributions of the rib cage and abdomen to ventilation were determined from chest-wall motions. 2. Total lung capacity (TLC) was decreased and residual volume increased in the patients. After correction for the decreased TLC, the distribution of the regional functional residual capacity in the tetraplegic patients was similar to that of the normal subjects. In the patients, where the abdomen contributed to about half of the tidal volume, decreased ventilation of basal regions was demonstrated from measurements of regional tidal volumes (Vtr) and regional 133Xe wash-in curves. 3. The distribution of ventilation in normal persons, however, was not changed by varying the relative contributions of the rib cage and abdomen to the tidal volume, as shown from Vtr and regional 133Xe wash-out measurements. 4. The results in the tetraplegic patients are interpreted as evidence of ‘small airway disease’, presumably from infection of the air way and impairment of the cough.

1993 ◽  
Vol 75 (2) ◽  
pp. 696-703 ◽  
Author(s):  
S. J. Johnston ◽  
K. L. Watkin ◽  
P. T. Macklem

We investigated breathing patterns in stutterers during relatively fluent speech and compared these with normal subjects for similar speech tasks. Rib cage and abdominal displacements and esophageal, gastric, and transdiaphragmatic pressures provided indexes of diaphragmatic, rib cage, and abdominal muscle contraction. We found that stutterers spoke either at substantially higher or lower lung volumes than normal subjects, confining their speech to the inspiratory capacity or expiratory reserve volume. During spontaneous speech, stutterers did not cross functional residual capacity (FRC) for most breaths. In addition, stutterers used several different motion pathways from breath to breath. At high lung volumes stutterers used the diaphragm to provide inspiratory braking. At lung volumes below FRC stutterers recruited their abdominals. This contrasted with normal subjects who spoke in the middle part of the vital capacity and who recruited inspiratory and expiratory rib cage muscles above and below FRC, respectively. Breath sizes were log-normally distributed in stutterers compared with a gaussian distribution in normal subjects (P < 0.001). During reading, stutterers tended to cross FRC (P < 0.01), used very similar initiation lung volumes from breath to breath (P < 0.001), and used similar motion pathways to achieve deflation. We conclude that stutterers sustain fluency by speaking at abnormally high or low lung volumes and that this may account for the different muscle patterns observed in stutterers compared with normal subjects.


1987 ◽  
Vol 62 (3) ◽  
pp. 919-925 ◽  
Author(s):  
A. De Troyer ◽  
V. Ninane ◽  
J. J. Gilmartin ◽  
C. Lemerre ◽  
M. Estenne

The electrical activity of the triangularis sterni (transversus thoracis) muscle was studied in supine humans during resting breathing and a variety of respiratory and nonrespiratory maneuvers known to bring the abdominal muscles into action. Twelve normal subjects, of whom seven were uninformed and untrained, were investigated. The electromyogram of the triangularis sterni was recorded using a concentric needle electrode, and it was compared with the electromyograms of the abdominal (external oblique and rectus abdominis) muscles. The triangularis sterni was usually silent during resting breathing. In contrast, the muscle was invariably activated during expiration from functional residual capacity, expulsive maneuvers, “belly-in” isovolume maneuvers, static head flexion and trunk rotation, and spontaneous events such as speech, coughing, and laughter. When three trained subjects expired voluntarily with considerable recruitment of the triangularis sterni and no abdominal muscle activity, rib cage volume decreased and abdominal volume increased. These results indicate that unlike in the dog, spontaneous quiet expiration in supine humans is essentially a passive process; the human triangularis sterni, however, is a primary muscle of expiration; and its neural activation is largely coupled with that of the abdominals. The triangularis sterni probably contributes to the deflation of the rib cage during active expiration.


1989 ◽  
Vol 67 (4) ◽  
pp. 1438-1442 ◽  
Author(s):  
G. A. Farkas ◽  
M. Estenne ◽  
A. De Troyer

A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.


2019 ◽  
Vol 126 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Kun-Ze Lee

The present study was designed to investigate breathing patterns across the sleep-wake state following a high cervical spinal injury in rats. The breathing patterns (e.g., respiratory frequency, tidal volume, and minute ventilation), neck electromyogram, and electroencephalography of unanesthetized adult male rats were measured at the acute (i.e., 1 day), subchronic (i.e., 2 wk), and/or chronic (i.e., 6 wk) injured stages after unilateral contusion of the second cervical spinal cord. Cervical spinal cord injury caused a long-term reduction in the tidal volume but did not influence the sleep-wake cycle duration. The minute ventilation during sleep was usually lower than that during the wake period in uninjured animals due to a decrease in respiratory frequency. However, this sleep-induced reduction in respiratory frequency was not observed in contused animals at the acute injured stage. By contrast, the tidal volume was significantly lower during sleep in contused animals but not uninjured animals from the acute to the chronic injured stage. Moreover, the frequency of sigh and postsigh apnea was elevated in acutely contused animals. These results indicated that high cervical spinal contusion is associated with exacerbated sleep-induced attenuation of the tidal volume and higher occurrence of sleep apnea, which may be detrimental to respiratory functional recovery after cervical spinal cord injury. NEW & NOTEWORTHY Cervical spinal injury is usually associated with sleep-disordered breathing. The present study investigated breathing patterns across sleep-wake state following cervical spinal injury in the rat. Unilateral cervical spinal contusion significantly impacted sleep-induced alteration of breathing patterns, showing a blunted frequency response and exacerbated attenuated tidal volume and occurrence of sleep apnea. The result enables us to investigate effects of cervical spinal injury on the pathogenesis of sleep-disordered breathing and evaluate potential therapies to improve respiration.


1977 ◽  
Vol 43 (4) ◽  
pp. 600-602 ◽  
Author(s):  
K. Tusiewicz ◽  
H. Moldofsky ◽  
A. C. Bryan ◽  
M. H. Bryan

The pattern of motion of the rib cage and abdomen/diaphragm was studied in three normal subjects during sleep. Sleep state was monitored by electroencephalograph and electrocculograph. Intercostal electromyographs (EMG's) were recorded from the second interspace parasternally. Abdominothoracic motion was monitored with magnetometers and these signals calibrated by isovolume lines either immediately before going to sleep, or if there was movement, on awakening. Respiration was recorded using a jerkin plethysmograph. In the awake subject in the supine position, the rib cage contributed 44% to the tidal volume and had essentially the same contribution in quiet sleep. However, in active or rapid eye movement sleep the rib cage contribution fell to 19% of the tidal volume. This was accompanied by a marked reduction in the intercostal EMG. With the subject in the upright position the rib cage appears to be passively driven by the diaphragm. However, the present data suggest that active contraction of the intercostal muscles is required for normal rib cage expansion in the supine position.


1999 ◽  
Vol 87 (4) ◽  
pp. 1491-1495 ◽  
Author(s):  
Joseph R. Rodarte ◽  
Gassan Noredin ◽  
Charles Miller ◽  
Vito Brusasco ◽  
Riccardo Pellegrino ◽  
...  

During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964–975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by ∼10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.


1959 ◽  
Vol 14 (4) ◽  
pp. 499-506 ◽  
Author(s):  
K. Tokuyasu ◽  
A. Coblentz ◽  
H. R. Bierman

Estimation of pulmonary ventilation was attempted by measuring the elimination of nitrogen and helium with the mass spectrometer. Exhalatory concentrations of nitrogen and helium were continuously recorded in each of 12 normal subjects and 10 patients with pulmonary enphysema or space-occupying pulmonary lesions. Uniform values for both slow and rapid uneven ventilation were found in all normal subjects but always less than in emphysematous states. Ratios of effective tidal volume (Vt) and alveolar ventilation volume (f·Vt) to functional residual capacity P = Vt/Vr and Q = f·Vt/Vr were one half or less than those in the normal subject. Smaller values of uneven ventilation were found for helium than nitrogen. Data computed by the theory of 'periodic' ventilation gave greater values for uneven ventilation (Q) and more accurately represented the physiologic conditions than derived by ‘continuous’ ventilation. Submitted on August 7, 1958


1986 ◽  
Vol 60 (4) ◽  
pp. 1198-1202 ◽  
Author(s):  
F. D. McCool ◽  
B. M. Pichurko ◽  
A. S. Slutsky ◽  
M. Sarkarati ◽  
A. Rossier ◽  
...  

Previous studies suggest that abdominal binding may affect the interaction of the rib cage and the diaphragm over the tidal range of breathing in quadriplegia. To determine whether abdominal binding influences rib cage motion over the entire range of inspiratory capacity, we used spirometry and the helium-dilution technique to measure functional residual capacity (FRC), inspiratory capacity, and total lung capacity (TLC) in eight quadriplegic and five normal subjects in supine, tilted (37 degrees), and seated positions. Combined data in all three positions indicated that, with abdominal binding, FRC and TLC decreased in normal subjects [delta FRC = -0.33 + 0.151 (SD) P less than 0.01); delta TLC = -0.16 + 0.121, P less than 0.05]. In quadriplegia there was also a reduction in FRC with binding (delta FRC = -0.32 + 0.101, P less than 0.001). However, TLC increased in quadriplegia (delta TLC = 0.07 + 0.061, P less than 0.025). In an additional six quadriplegic and five normal subjects, we used magnetometers to define the influences of abdominal binding on rib cage dimensions and TLC. In quadriplegia, rib cage dimensions were increased at TLC with abdominal binding, whereas there was no change in normals. Our data suggest that this inspiratory effect of abdominal binding on augmenting rib cage volume in quadriplegia is greater than the effect of impeding diaphragm descent, and thus abdominal binding produces a net increase in TLC in quadriplegia.


1987 ◽  
Vol 62 (4) ◽  
pp. 1665-1670 ◽  
Author(s):  
J. W. Fitting ◽  
D. A. Chartrand ◽  
T. D. Bradley ◽  
K. J. Killian ◽  
A. Grassino

The respiratory sensations evoked by added inspiratory loads are currently thought to be largely mediated by the activity of the inspiratory muscles. Because of the differences in proprioceptors and in afferent and efferent innervations among the inspiratory muscles, we hypothesized that the sensation evoked by a given load would be different when the motor command is directed mainly to rib cage muscles or mainly to the diaphragm. To test this hypothesis, we studied six normal subjects breathing against several inspiratory resistances while emphasizing the use of rib cage muscles, or the diaphragm, or a combination of both. At the end of 10 loaded breaths the subjects rated the perceived magnitude of inspiratory effort on a Borg scale. A linear and unique relationship (r = 0.96 +/- 0.02; P less than 0.001) was found between the sensation and esophageal pressure (Pes) in the three thoracoabdominal breathing patterns. We conclude that the level of Pes, whether generated mainly by the rib cage muscles or the diaphragm, is the main variable related to the sensation of inspiratory effort under external inspiratory loads.


1961 ◽  
Vol 16 (1) ◽  
pp. 27-29 ◽  
Author(s):  
Francisco Moreno ◽  
Harold A. Lyons

The changes produced by body posture on total lung capacity and its subdivisions have been reported for all positions except the prone position. Twenty normal subjects, twelve males and eight females, had determinations of total lung capacity in the three body positions, sitting, supine and prone. Tidal volume, minute ventilation and O2 consumption were also measured. The changes found on assumption of the supine position from the sitting position were similar to those previously reported. For the prone position, a smaller inspiratory capacity and a larger expiratory reserve volume were found. The mean values were changed, respectively, –8% and +37%. Associated with these changes was a significant increase of the functional residual capacity by 636 ml. Ventilation did not change significantly from that found during sitting, unlike the findings associated with the supine position, in which position the tidal volume was decreased. Respiratory frequency remained the same for all positions. Submitted on April 5, 1960


Sign in / Sign up

Export Citation Format

Share Document