scholarly journals Cholinergic blockade of neuroinflammation – from tissue to RNA regulators

2022 ◽  
Author(s):  
Tamara Zorbaz ◽  
Nimrod Madrer ◽  
Hermona Soreq

Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs and transfer RNA fragments may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood-brain barrier protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body-brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammatory-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1605
Author(s):  
Julie J. Ahn ◽  
Mohammad Abu-Rub ◽  
Robert H. Miller

In recent years, the role of B cells in neurological disorders has substantially expanded our perspectives on mechanisms of neuroinflammation. The success of B cell-depleting therapies in patients with CNS diseases such as neuromyelitis optica and multiple sclerosis has highlighted the importance of neuroimmune crosstalk in inflammatory processes. While B cells are essential for the adaptive immune system and antibody production, they are also major contributors of pro- and anti-inflammatory cytokine responses in a number of inflammatory diseases. B cells can contribute to neurological diseases through peripheral immune mechanisms, including production of cytokines and antibodies, or through CNS mechanisms following compartmentalization. Emerging evidence suggests that aberrant pro- or anti-inflammatory B cell populations contribute to neurological processes, including glial activation, which has been implicated in the pathogenesis of several neurodegenerative diseases. In this review, we summarize recent findings on B cell involvement in neuroinflammatory diseases and discuss evidence to support pathogenic immunomodulatory functions of B cells in neurological disorders, highlighting the importance of B cell-directed therapies.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edgar Ramos-Martinez ◽  
Ivan Ramos-Martínez ◽  
Gladys Molina-Salinas ◽  
Wendy A. Zepeda-Ruiz ◽  
Marco Cerbon

Abstract Prolactin has been shown to favor both the activation and suppression of the microglia and astrocytes, as well as the release of inflammatory and anti-inflammatory cytokines. Prolactin has also been associated with neuronal damage in diseases such as multiple sclerosis, epilepsy, and in experimental models of these diseases. However, studies show that prolactin has neuroprotective effects in conditions of neuronal damage and inflammation and may be used as neuroprotector factor. In this review, we first discuss general information about prolactin, then we summarize recent findings of prolactin function in inflammatory and anti-inflammatory processes and factors involved in the possible dual role of prolactin are described. Finally, we review the function of prolactin specifically in the central nervous system and how it promotes a neuroprotective effect, or that of neuronal damage, particularly in experimental autoimmune encephalomyelitis and during excitotoxicity. The overall studies indicated that prolactin may be a promising molecule for the treatment of some neurological diseases.


2001 ◽  
Vol 281 (5) ◽  
pp. L1037-L1050 ◽  
Author(s):  
Jie Fan ◽  
Richard D. Ye ◽  
Asrar B. Malik

Acute lung injury occurs as a result of a cascade of cellular events initiated by either infectious or noninfectious inflammatory stimuli. An elevated level of proinflammatory mediators combined with a decreased expression of anti-inflammatory molecules is a critical component of lung inflammation. Expression of proinflammatory genes is regulated by transcriptional mechanisms. Nuclear factor-κB (NF-κB) is one critical transcription factor required for maximal expression of many cytokines involved in the pathogenesis of acute lung injury. Activation and regulation of NF-κB are tightly controlled by a complicated signaling cascade. In acute lung injury caused by infection of bacteria, Toll-like receptors play a central role in initiating the innate immune system and activating NF-κB. Anti-inflammatory cytokines such as interleukin-10 and interleukin-13 have been shown to suppress inflammatory processes through inhibiting NF-κB activation. NF-κB can interact with other transcription factors, and these interactions thereby lead to greater transcriptional selectivity. Modification of transcription is likely to be a logical therapeutic target for acute lung injury.


Author(s):  
L F Ferreira ◽  
P G Garcia Neto ◽  
S C M Titon ◽  
B Titon ◽  
S M Muxel ◽  
...  

Abstract Glucocorticoids and melatonin (MEL) show integrated and complex immunomodulatory effects, mostly described for endotherms, yet underexplored in amphibians. In this context, the RT-qPCR of molecules mediating inflammatory processes in amphibians is a valuable tool to explore the relationships among molecular biology, endocrine mediators, and immune response in these animals. In this study, toads (Rhinella diptycha) received an intraperitoneal saline injection or lipopolysaccharide (LPS; 2 mg/kg). Six hours post-injection, we analyzed plasma corticosterone (CORT) and MEL levels and pro and anti-inflammatory molecules (IL-1β, IL-6, IL-10, IFN-γ, and C1s). We found increased CORT and decreased MEL levels in response to LPS. Also, IL-1β, IL-6, and IL-10 were upregulated in LPS-injected toads compared with saline-injected. Overall, our results demonstrate an LPS-induced inflammatory response with endocrine and immune modulation in R. diptycha toads, exhibiting expected patterns for an inflammatory stimulus within this timeframe (6 h post-injection). Toads were responsive to LPS by secreting different cytokines, such as proinflammatory cytokines IL-1β and IL-6, related to immune cell attraction to inflammatory sites and the anti-inflammatory cytokine IL-10, which limits the rate of leukocyte infiltration, inflammation, and downregulates the expression of proinflammatory cytokines. Increased circulating CORT levels are probably associated with the activation of the hypothalamus-pituitary-interrenal axis by the LPS and the endocrine actions of IL-6. Furthermore, decreased circulating MEL levels are likely due to inhibited MEL secretion by the pineal gland by inflammatory stimuli, indicating the activation/existence of the immune-pineal axis in amphibians.


2021 ◽  
pp. 1-55
Author(s):  
Siu Wa Tang ◽  
Daiga Helmeste ◽  
Brian Leonard

Abstract Neuropsychiatric sequalae to COVID-19 infection are beginning to emerge, like previous Spanish influenza and SARS episodes. Streptococcal infection in pediatric patients causing OCD (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, wide-spread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long term specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favorable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease modifying therapies are increasingly being applied to neuropsychiatric diseases characterized by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.


2008 ◽  
Vol 78 (6) ◽  
pp. 293-298 ◽  
Author(s):  
Bernhard Watzl

Inflammation is a pathological condition underlying a number of diseases including cardiovascular diseases, cancer, and chronic inflammatory diseases. In addition, healthy, obese subjects also express markers of inflammation in their blood. Diet provides a variety of nutrients as well as non-nutritive bioactive constituents which modulate immunomodulatory and inflammatory processes. Epidemiological data suggest that dietary patterns strongly affect inflammatory processes. Primarily the intake of fruit and vegetables as well as of whole wheat is inversely associated with the risk of inflammation. In addition to observational studies there are also data from human intervention studies suggesting an anti-inflammatory potential of these plant foods. At the level of bioactive compounds occurring in plant foods, primarily carotenoids and flavonoids seem to modulate inflammatory as well as immunological processes. In conclusion, there is convincing evidence that plant foods and non-nutritive constituents associated with these foods modulate immunological and inflammatory processes. By means of anti-inflammatory activities a plant-based diet may contribute to the lower risk of cardiovascular diseases and cancer. A high intake of vegetables, fruit, and whole wheat as recommended by all international nutrition authorities provides a wide spectrum of bioactive compounds at health-promoting concentrations.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 922
Author(s):  
Kristine Stromsnes ◽  
Angela G. Correas ◽  
Jenny Lehmann ◽  
Juan Gambini ◽  
Gloria Olaso-Gonzalez

Inflammation is a physiological process involved in the defenses of the body and the repair of tissues. It is acutely activated by infections, trauma, toxins, or allergic reactions. However, if it becomes chronic, inflammation can end up stimulating the development of diseases such as cardiovascular disease, autoimmune disease, neurological disease, or cancer. Additionally, during aging, inflammation becomes increasingly more chronic. Furthermore, we found that certain foods, such as saturated fats, have pro-inflammatory activity. Taking this into account, in this review we have discussed different diets with possible anti-inflammatory activity, the commonly ingested components of each diet and their active compounds. In addition, we have proposed some dietary guidelines, as well as a list of compounds present in foods with anti-inflammatory activity, outlining how to combine them to achieve optimal anti-inflammatory effects. Therefore, we can conclude that the compounds in our diet with anti-inflammatory activity could help alleviate the inflammatory processes derived from diseases and unhealthy diets, and thereby promote healthy aging.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Deok-Sang Hwang ◽  
Hyo Geun Kim ◽  
Jun-Bock Jang ◽  
Myung Sook Oh

Dangguijakyak-san (DJS), a famous traditional Korean multiherbal medicine, has been used to treat gynecological and neuro-associated disease. Recent studies demonstrated that DJS has multiple bioactivities including neuroprotection. In the present study, we were to investigate the effect of DJS and its mechanism in anin vitroandin vivomodel of Parkinson’s disease (PD). In primary mesencephalic culture system, DJS attenuated the dopaminergic cell damage induced by 1-methyl-4-phenylpyridine toxicity, and it inhibited production of inflammatory factors such as tumor necrosis factorα(TNF-α), nitric oxide (NO), and activation of microglial cells. Then, we confirmed the effect of DJS in a mouse PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In the pole test, DJS at 50 mg/kg/day for 5 days showed increase of motor activity showing shortened time to turn and locomotor activity compared with the MPTP only treated mice. In addition, DJS significantly protected nigrostriatal dopaminergic neuron from MPTP stress. Moreover, DJS showed inhibition of gliosis in the substantia nigra pars compacta. These results have therapeutic implications for DJS in the treatment of PD via anti-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document