scholarly journals Improved Q ‐learning algorithm for solving permutation flow shop scheduling problems

Author(s):  
Zimiao He ◽  
Kunlan Wang ◽  
Hanxiao Li ◽  
Hong Song ◽  
Zhongjie Lin ◽  
...  
2020 ◽  
Vol 10 (3) ◽  
pp. 1174 ◽  
Author(s):  
Xuelian Pang ◽  
Haoran Xue ◽  
Ming-Lang Tseng ◽  
Ming K. Lim ◽  
Kaihua Liu

Prior studies are lacking which address permutation flow shop scheduling problems and hybrid flow shop scheduling problems together to help firms find the optimized scheduling strategy. The permutation flow shop scheduling problem and hybrid flow shop scheduling problems are important production scheduling types, which widely exist in industrial production fields. This study aimed to acquire the best scheduling strategy for making production plans. An improved fireworks algorithm is proposed to minimize the makespan in the proposed strategies. The proposed improved fireworks algorithm is compared with the fireworks algorithm, and the improvement strategies include the following: (1) A nonlinear radius is introduced and the minimum explosion amplitude is checked to avoid the waste of optimal fireworks; (2) The original Gaussian mutation operator is replaced by a hybrid operator that combines Cauchy and Gaussian mutation to improve the search ability; and (3) An elite group selection strategy is adopted to reduce the computing costs. Two instances from the permutation flow shop scheduling problem and hybrid flow shop scheduling problems were used to evaluate the improved fireworks algorithm’s performance, and the computational results demonstrate the improved fireworks algorithm’s superiority.


2021 ◽  
Vol 16 (3) ◽  
pp. 269-284
Author(s):  
J.F. Ren ◽  
C.M. Ye ◽  
Y. Li

Aiming at Distributed Permutation Flow-shop Scheduling Problems (DPFSPs), this study took the minimization of the maximum completion time of the workpieces to be processed in all production tasks as the goal, and took the multi-agent Reinforcement Learning (RL) method as the main frame of the solution model, then, combining with the NASH equilibrium theory and the RL method, it proposed a NASH Q-Learning algorithm for Distributed Flow-shop Scheduling Problem (DFSP) based on Mean Field (MF). In the RL part, this study designed a two-layer online learning mode in which the sample collection and the training improvement proceed alternately, the outer layer collects samples, when the collected samples meet the requirement of batch size, it enters to the inner layer loop, which uses the Q-learning model-free batch processing mode to proceed, and adopts neural network to approximate the value function to adapt to large-scale problems. By comparing the Average Relative Percentage Deviation (ARPD) index of the benchmark test questions, the calculation results of the proposed algorithm outperformed other similar algorithms, which proved the feasibility and efficiency of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document