Conceptualization of adaptive relaying in protection of hybrid microgrid through analysis of open and short circuit faults based on q0 components of fault current

Author(s):  
M. Singh ◽  
P. Basak
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2160
Author(s):  
Arthur K. Barnes ◽  
Jose E. Tabarez ◽  
Adam Mate ◽  
Russell W. Bent

Protecting inverter-interfaced microgrids is challenging as conventional time-overcurrent protection becomes unusable due to the lack of fault current. There is a great need for novel protective relaying methods that enable the application of protection coordination on microgrids, thereby allowing for microgrids with larger areas and numbers of loads while not compromising reliable power delivery. Tools for modeling and analyzing such microgrids under fault conditions are necessary in order to help design such protective relaying and operate microgrids in a configuration that can be protected, though there is currently a lack of tools applicable to inverter-interfaced microgrids. This paper introduces the concept of applying an optimization problem formulation to the topic of inverter-interfaced microgrid fault modeling, and discusses how it can be employed both for simulating short-circuits and as a set of constraints for optimal microgrid operation to ensure protective device coordination.


2011 ◽  
Vol 13 (1) ◽  
pp. 41-45
Author(s):  
Jae-Young Jang ◽  
Young-Jae Kim ◽  
Jin-Bae Na ◽  
Suk-Jin Choi ◽  
Woo-Seung Lee ◽  
...  

2020 ◽  
Author(s):  
Alexandre Bitencourt ◽  
Daniel H. N. Dias ◽  
Bruno W. França ◽  
Felipe Sass ◽  
Guilherme G. Sotelo

The increase in demand for electric power and the insertion of a distributed generation led to the rise of the short-circuit current in substations. Most of these Brazilian substations were designed decades ago, because of that their equipment may not support the new short-circuit current levels. To protect the installed equipment and avoid excessive costs replacing old devices, it is possible to install Fault Current Limiters (FCLs). This document is a report from an R&D project that evaluated FCL topologies considering real parameters in simulation from used equipment, concluding that the selected FCL topologies accomplished their technical objective. However, before implementing these topologies in the distribution system, one should consider the technical and economic feasibility of using semiconductor switching devices.


2020 ◽  
Author(s):  
Gabriel Dos Santos ◽  
Flávio Goulart dos Reis Martins ◽  
Bárbara Maria Oliveira Santos ◽  
Daniel Henrique Nogueira Dias ◽  
Guilherme Gonçalves Sotelo ◽  
...  

Nowadays, the complexity of electrical power systems is increasing. Consequently, the occurrence and the amplitude of the fault current are rising. This fault currents harm the substations’ electrical equipment. Besides, the growth in the fault current level is forcing the change of the circuit breakers to others with a higher interruption capability. A proposal to solve this problem is the fault current limiter (FCL). This equipment has low impedance in the normal operation and high impedance in a short circuit moment. Superconductors are an advantageous choice of material in this case, because of their properties. In order to simulate this equipment, the 2-D Finite Element Method (FEM) has been used. In this paper, a novel FEM simulation analysis of the saturated core Superconductor Fault Current Limiter (SFCL) is proposed using the A-V-H formulation. The current distribution in the superconducting coil is observed. The results are compared to the limited fault current measurements and simulations available in the literature.


2019 ◽  
Vol 9 (9) ◽  
pp. 1737 ◽  
Author(s):  
Bin Jiang ◽  
Yanfeng Gong

A modular multilevel converter based high-voltage DC (MMC-HVDC) system has been the most promising topology for HVDC. A reclosing scheme is usually configured because temporary faults often occur on transmission lines especially when overhead lines are used, which often brings about an overcurrent problem. In this paper, a new fault current limiter (FCL) based on reclosing current limiting resistance (RCLR) is proposed to solve the overcurrent problem during the reclosing process. Firstly, a mesh current method (MCM) based short-circuit current calculation method is newly proposed to solve the fault current calculation of a loop MMC-HVDC grid. Then the method to calculate the RCLR is proposed based on the arm current to limit the arm currents to a specified value during the reclosing process. Finally, a three-terminal loop MMC-HVDC test grid is constructed in the widely used electromagnetic transient simulation software PSCAD/EMTDC and the simulations prove the effectiveness of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document