Finite-time robust fault-tolerant control against actuator faults and saturations

2017 ◽  
Vol 11 (4) ◽  
pp. 550-556 ◽  
Author(s):  
Xiao-Zheng Jin ◽  
Yi-Gang He ◽  
You-Guo He
Author(s):  
Jing-guang Sun ◽  
Shen-Min Song ◽  
Peng-Li ◽  
Guan-qun Wu

In this paper, related researches and analyses are conducted for the tracking problem of the hypersonic vehicle subject to external disturbances, actuator faults, and input saturation. Firstly, to achieve automatic adjustment of control gains and deal with the impact of dynamic failures of system without requiring prior knowledge of the fault, a new modified fast nonsingular terminal sliding manifold is proposed, and a fast adaptive finite time fault-tolerant controller is provided combining the adaptive control method and terminal sliding mode. Then, a fast adaptive finite time anti-saturation fault-tolerant controller is presented to further solve the problem of input saturation, under which both of the velocity and altitude can track respective reference signal with the actuator input constraint. Finally, the closed-loop stability under the proposed two adaptive fault-tolerant control schemes is analyzed, and numerical simulations of longitudinal model of the hypersonic vehicle are demonstrated to further confirm the effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chao Tan ◽  
Guodong Xu ◽  
Limin Dong ◽  
Han Zhao ◽  
Jun Li ◽  
...  

In this paper, we focus on solving the problems of inertia-free attitude tracking control for spacecraft subject to external disturbance, unknown inertial parameters, and actuator faults. The robust control architecture is designed by using the rotation matrix and neural networks. In the presence of external disturbance and parametric uncertainties, a fault-tolerant control (FTC) scheme synthesized with the minimum-learning-parameter (MLP) algorithm is proposed to improve the reliability of the system when unknown actuator faults occur. These methods are developed based on backstepping to ensure that finite-time convergence is achievable for the entire closed-loop system states with low computational complexity. The validity and advantage of the designed controllers are highlighted by using Lyapunov-based analysis. Finally, the simulation results demonstrate the satisfactory performance of the developed controllers.


Sign in / Sign up

Export Citation Format

Share Document