Simple quasi-two-dimensional analytical model to characterise the electric field in an LDD MOSFET

1990 ◽  
Vol 137 (4) ◽  
pp. 291
Author(s):  
R.H. Patel ◽  
D.-L. Kwong ◽  
N. Herr
2021 ◽  
Author(s):  
Jagamohan Sahoo ◽  
Rajat Mahapatra

Abstract We have developed a simple physics-based two-dimensional analytical Off-state breakdown voltage model of a PBOSS Silicon-On-Insulator Lateral Diffused Metal Oxide Semiconductor (SOI-LDMOS) transistor. The analytical model includes the expressions of surface potential and electric field distributions in the drift region by solving the 2D Poisson’s equation. The electric field at the Si-SiO2 surface is modified by creating additional electric field peaks due to the presence of the PBOSS structure. The uniformly distributed electric field results in improving the breakdown voltage. Further, the breakdown voltage is analytically obtained via critical electric field concept to quantify the breakdown characteristic. The model exploits the impact of the critical device design parameters such as thickness and length of the PBOSS structure, doping, and thickness of the drift region on the surface electric field and the breakdown voltage. The proposed model is verified by the results obtained from ATLAS two dimensional simulations. The analytical model is of the high potential from a physical and mathematical point of view to design high voltage SOI-LDMOS transistors for power switching applications.


2021 ◽  
Vol 23 (10) ◽  
pp. 6171-6181
Author(s):  
Yaoqi Gao ◽  
Baozeng Zhou ◽  
Xiaocha Wang

It is found that the biaxial strain, electric field and interlayer distance can effectively modulate the electronic structure and magnetic properties of two-dimensional van der Waals heterostructures.


2021 ◽  
Vol 259 ◽  
pp. 118121
Author(s):  
Guangping Fan ◽  
Dongmei Zhou ◽  
Zhenhua Zhang ◽  
Yuchun Ai ◽  
Weiguo Zhang ◽  
...  

2009 ◽  
Vol 626 ◽  
pp. 367-393 ◽  
Author(s):  
STEFAN MÄHLMANN ◽  
DEMETRIOS T. PAPAGEORGIOU

The effect of an electric field on a periodic array of two-dimensional liquid drops suspended in simple shear flow is studied numerically. The shear is produced by moving the parallel walls of the channel containing the fluids at equal speeds but in opposite directions and an electric field is generated by imposing a constant voltage difference across the channel walls. The level set method is adapted to electrohydrodynamics problems that include a background flow in order to compute the effects of permittivity and conductivity differences between the two phases on the dynamics and drop configurations. The electric field introduces additional interfacial stresses at the drop interface and we perform extensive computations to assess the combined effects of electric fields, surface tension and inertia. Our computations for perfect dielectric systems indicate that the electric field increases the drop deformation to generate elongated drops at steady state, and at the same time alters the drop orientation by increasing alignment with the vertical, which is the direction of the underlying electric field. These phenomena are observed for a range of values of Reynolds and capillary numbers. Computations using the leaky dielectric model also indicate that for certain combinations of electric properties the drop can undergo enhanced alignment with the vertical or the horizontal, as compared to perfect dielectric systems. For cases of enhanced elongation and alignment with the vertical, the flow positions the droplets closer to the channel walls where they cause larger wall shear stresses. We also establish that a sufficiently strong electric field can be used to destabilize the flow in the sense that steady-state droplets that can exist in its absence for a set of physical parameters, become increasingly and indefinitely elongated until additional mechanisms can lead to rupture. It is suggested that electric fields can be used to enhance such phenomena.


Sign in / Sign up

Export Citation Format

Share Document