scholarly journals A novel adaptive cascade controller design on a buck–boost DC–DC converter with a fractional‐order PID voltage controller and a self‐tuning regulator adaptive current controller

2021 ◽  
Author(s):  
Hasan Mollaee ◽  
Seyyed Morteza Ghamari ◽  
Seyyed Amirhossein Saadat ◽  
Patrick Wheeler
Author(s):  
Mohamed Abdelbar Shamseldin ◽  
Mohamed Sallam ◽  
Abdel Halim Bassiuny ◽  
A. M. Abdel Ghany

<span>This paper presents a novel self-tuning fractional order PID (FOPID) control based on optimal Model Reference Adaptive Control (MRAC). The proposed control technique has subjected to a third order system case study (power system load frequency control). The model reference describes the requirements of designer. It can be first or second order system. The parameters of MRAC have obtained using the harmony search (HS) optimization technique to achieve the optimal performance. Sometimes, the tuning of the five parameters of FOPID control online at same moment consumes more calculation time and more processing. So, this study proposes three methods for self-tuning FOPID control. The first method has been implemented to tune the two integral and derivative parameters only and the rest of parameters are fixed. The second method has been designed to adjust the proportional, integral derivative parameters while the other fractional parameters are constant. The last method has developed to adjust the five parameters of FOPID control simultaneously. The simulation results illustrate that the third method of self-tuning FOPID control can accommodate the sudden disturbance compared to other techniques. Also, it can absorb the system uncertainty better than the other control techniques.</span>


2020 ◽  
Vol 11 (2) ◽  
pp. 281-291 ◽  
Author(s):  
Rosy Pradhan ◽  
Santosh Kumar Majhi ◽  
Jatin Kumar Pradhan ◽  
Bibhuti Bhusan Pati

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1182 ◽  
Author(s):  
Mihailo Micev ◽  
Martin Ćalasan ◽  
Diego Oliva

This paper presents a novel method for optimal tunning of a Fractional Order Proportional-Integral-Derivative (FOPID) controller for an Automatic Voltage Regulator (AVR) system. The presented method is based on the Yellow Saddle Goatfish Algorithm (YSGA), which is improved with Chaotic Logistic Maps. Additionally, a novel objective function for the optimization of the FOPID parameters is proposed. The performance of the obtained FOPID controller is verified by comparison with various FOPID controllers tuned by other metaheuristic algorithms. A comparative analysis is performed in terms of step response, frequency response, root locus, robustness test, and disturbance rejection ability. Results of the simulations undoubtedly show that the FOPID controller tuned with the proposed Chaotic Yellow Saddle Goatfish Algorithm (C-YSGA) outperforms FOPID controllers tuned by other algorithms, in all of the previously mentioned performance tests.


Sign in / Sign up

Export Citation Format

Share Document