scholarly journals Gaia Data Release 2

2018 ◽  
Vol 616 ◽  
pp. A14 ◽  
Author(s):  
◽  
F. Mignard ◽  
S. A. Klioner ◽  
L. Lindegren ◽  
J. Hernández ◽  
...  

Context. The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain. A subset of these quasars have accurate VLBI positions that allow the axes of the reference frame to be aligned with the International Celestial Reference System (ICRF) radio frame. Aims. We describe the astrometric and photometric properties of the quasars that were selected to represent the celestial reference frame of Gaia DR2 (Gaia-CRF2), and to compare the optical and radio positions for sources with accurate VLBI positions. Methods. Descriptive statistics are used to characterise the overall properties of the quasar sample. Residual rotation and orientation errors and large-scale systematics are quantified by means of expansions in vector spherical harmonics. Positional differences are calculated relative to a prototype version of the forthcoming ICRF3. Results. Gaia-CRF2 consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G ≃ 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = mag. Large-scale systematics are estimated to be in the range 20 to 30 μas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions. Conclusions. Based on less than 40% of the data expected from the nominal Gaia mission, Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. Its accuracy matches the current radio frame of the ICRF, but the density of sources in all parts of the sky is much higher, except along the Galactic equator.

2014 ◽  
pp. 85-93 ◽  
Author(s):  
G. Damljanovic ◽  
O. Vince ◽  
S. Boeva

The astrometric European Space Agency (ESA) Gaia mission was launched in December 19, 2013. One of the tasks of the Gaia mission is production of an astrometric catalog of over one billion stars and more than 500000 extragalactic sources. The quasars (QSOs), as extragalactic sources and radio emitters, are active galactic nuclei objects (AGNs) whose coordinates are well determined via Very Long Baseline Interferometry (VLBI) technique and may reach sub-milliarcsecond accuracy. The QSOs are the defining sources of the quasi-inertial International Celestial Reference Frame (ICRF) because of their core radio morphology, negligible proper motions (until sub-milliarcsecond per year), and apparent point-like nature. Compact AGNs, visible in optical domain, are useful for a direct link of the future Gaia optical reference frame with the most accurate radio one. Apart from the above mentioned activities, Gaia has other goals such as follow-up of transient objects. One of the most important Gaia's requirements for photometric alerts is a fast observation and reduction response, that is, submition of observations within 24 hours. For this reason we have developed a pipeline. In line with possibilities of our new telescope (D(cm)/F(cm)=60/600) at the Astronomical Station Vidojevica (ASV, of the Astronomical Observatory in Belgrade), we joined the Gaia-Follow-Up Network for Transients Objects (Gaia-FUN-TO) for the photometric alerts. Moreover, in view of the cooperation with Bulgarian colleagues (in the frst place, SV), one of us (GD) initiated a local mini-network of Serbian { Bulgarian telescopes useful for the Gaia-FUN-TO and other astronomical purposes. During the next year we expect a new 1.4 m telescope at ASV site. The speed of data processing (from observation to calibration server) could be one day. Here, we present an overview of our activities in the Gaia-FUN-TO which includes establishing Serbian { Bulgarian mini-network (of five telescopes at three sites, ASV in Serbia, Belogradchik and Rozhen in Bulgaria), the Gaia-FUN-TO test observations, and some results.


1998 ◽  
Vol 11 (1) ◽  
pp. 300-303
Author(s):  
N. Zacharias

The International Celestial Reference Frame (ICRF) is realized by the positions of 608 compact extragalactic radio sources (Ma & Feissel 1997) with milliarcsecond (mas) and sub-mas accuracy, all being on the same system, the International Celestial Reference System (ICRS). The Hipparcos Catalogue (ESA 1997) is the practical realization of the ICRF at optical wavelengths, giving accurate positions (≈ 1 mas) at the mean epoch of 1991.25 and proper motions (≈ 1 mas/yr) for 117995 stars. This is about 2.5 stars per square degree, most being in the 7 to 9 magnitude range and a few as faint as 12. However, for many astronomical applications the Hipparcos Catalogue is not dense enough and does not reach faint enough magnitudes. The Tycho Catalogue (ESA 1997) provides accurate positions (≈ 25 mas) for about one million stars to magnitude 11, but lacks precise proper motions. Ground-based observations are an efficient way to complement the Hipparcos mission and to extend the optical reference frame to fainter magnitudes and yield a denser grid of astrometric standard stars. New reductions of early epoch photographic data will be used to provide highly accurate proper motions for stars to about magnitude 12. Current and new observational projects will extend the optical reference frame to even fainter magnitudes.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


1967 ◽  
Vol 45 (4) ◽  
pp. 1481-1495 ◽  
Author(s):  
Myer Bloom ◽  
Eric Enga ◽  
Hin Lew

A successful transverse Stern–Gerlach experiment has been performed, using a beam of neutral potassium atoms and an inhomogeneous time-dependent magnetic field of the form[Formula: see text]A classical analysis of the Stern–Gerlach experiment is given for a rotating inhomogeneous magnetic field. In general, when space quantization is achieved, the spins are quantized along the effective magnetic field in the reference frame rotating with angular velocity ω about the z axis. For ω = 0, the direction of quantization is the z axis (conventional Stern–Gerlach experiment), while at resonance (ω = −γH0) the direction of quantization is the x axis in the rotating reference frame (transverse Stern–Gerlach experiment). The experiment, which was performed at 7.2 Mc, is described in detail.


1998 ◽  
Vol 11 (1) ◽  
pp. 320-321
Author(s):  
C.S. Jacobs ◽  
O.J. Sovers ◽  
D. Gordon ◽  
C. Ma ◽  
A.-M. Gontier

As discussed in other papers in this volume, the IAU XXIII General Assembly adopted a new fundamental celestial reference frame: the International Celestial Reference Frame (ICRF) based on VLBI observations of extragalactic radio sources (Ma et al., 1997). It is approximately 300 times more accurate than its predecessor, the FK5. At present, no other technique has produced a more accurate celestial frame than VLBI, Since no other astrometric technique provides an external standard of accuracy, the VLBI claim of a great leap forward in accuracy must be verified by internal consistency tests. This paper addresses one aspect of internal consistency: the ability of independent VLBI software packages to reproduce a celestial frame without significant loss of accuracy. This is no small task since the software packages are large - involving on the order of 100 000 lines of code. What does VLBI software do? Aside from routines designed to collect the data and extract raw observables which will not be considered here, its principal task is to model the differential group delay and phase delay rate of radio signals received at two widely separated antennas (Sovers, Fanselow & Jacobs, 1998). The software then refines this model via a least squares adjustment of relevant physical parameters which describe station locations, source positions, clock offsets, atmospheric refraction, tidal effects, etc. In the early 1990s, studies revealed that differences in software implementation and analyst’s choices of model options were one of the largest contributors to differences in independent calculations of VLBI celestial frames. These differences were of comparable size to the formal uncertainties of the celestial frame’s source positions.


Sign in / Sign up

Export Citation Format

Share Document