scholarly journals Rapid late-time X-ray brightening of the tidal disruption event OGLE16aaa

2020 ◽  
Vol 639 ◽  
pp. A100 ◽  
Author(s):  
Jari J. E. Kajava ◽  
Margherita Giustini ◽  
Richard D. Saxton ◽  
Giovanni Miniutti

Stars that pass too close to a super-massive black hole may be disrupted by strong tidal forces. OGLE16aaa is one such tidal disruption event (TDE) which rapidly brightened and peaked in the optical/UV bands in early 2016 and subsequently decayed over the rest of the year. OGLE16aaa was detected in an XMM-Newton X-ray observation on June 9, 2016 with a flux slightly below the Swift/XRT upper limits obtained during the optical light curve peak. Between June 16–21, 2016, Swift/XRT also detected OGLE16aaa and based on the stacked spectrum, we could infer that the X-ray luminosity had jumped up by more than a factor of ten in just one week. No brightening signal was seen in the simultaneous optical/UV data to cause the X-ray luminosity to exceed the optical/UV one. A further XMM-Newton observation on November 30, 2016 showed that almost a year after the optical/UV peak, the X-ray emission was still at an elevated level, while the optical/UV flux decay had already leveled off to values comparable to those of the host galaxy. In all X-ray observations, the spectra were nicely modeled with a 50–70 eV thermal component with no intrinsic absorption, with a weak X-ray tail seen only in the November 30 XMM-Newton observation. The late-time X-ray behavior of OGLE16aaa strongly resembles the tidal disruption events ASASSN-15oi and AT2019azh. We were able to pinpoint the time delay between the initial optical TDE onset and the X-ray brightening to 182 ± 5 days, which may possibly represent the timescale between the initial circularization of the disrupted star around the super-massive black hole and the subsequent delayed accretion. Alternatively, the delayed X-ray brightening could be related to a rapid clearing of a thick envelope that covers the central X-ray engine during the first six months.

2016 ◽  
Vol 12 (S324) ◽  
pp. 93-98
Author(s):  
S. Bradley Cenko

AbstractI present an overview of observational efforts across the electromagnetic spectrum to identify and study tidal disruption flares (TDFs), when a star wanders too close to a super-massive black hole and is torn apart by tidal forces. In particular I will focus on four unexpected surprises that challenge the most basic analytic picture of these events: 1) large inferred radii for the optical/UV-emitting material; 2) the ubiquity of outflows, detected at radio, X-ray, and UV wavelengths, ranging from speeds of 100 km/s to near the speed of light; 3) the peculiar atomic abundances observed in the UV and optical spectra of these objects; and, 4) the preference for these events to occur in post-starburst galaxies.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 531-534 ◽  
Author(s):  
Dheeraj R. Pasham ◽  
Ronald A. Remillard ◽  
P. Chris Fragile ◽  
Alessia Franchini ◽  
Nicholas C. Stone ◽  
...  

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical properties of their black holes.


2019 ◽  
Vol 492 (2) ◽  
pp. 1634-1640
Author(s):  
Sudip Chakraborty ◽  
Sudip Bhattacharyya ◽  
Chandrachur Chakraborty ◽  
A R Rao

ABSTRACT An estimate of the jet inclination angle relative to the accreting black hole’s spin can be useful to probe the jet triggering mechanism and the disc–jet coupling. A tidal disruption event (TDE) of a star by a supermassive spinning black hole provides an excellent astrophysical laboratory to study the jet direction through the possibility of jet precession. In this work, we report a new method to constrain the jet inclination angle β and apply it to the well-sampled jetted TDE Swift J1644+57. This method involves X-ray data analysis and comparisons of jet models with broad properties of the observed X-ray dips, to estimate the upper limit of the extent of the contribution of a plausible jet precession to these X-ray dips. From this limit, we find that β is very likely to be less than ∼15° for Swift J1644+57. Such a well-constrained jet inclination angle could be useful to probe the jet physics. The main advantage of our method is that it does not need to assume an origin of the observed X-ray dips, and the conclusion does not depend on any particular type of jet precession (e.g. the one due to the Lense–Thirring effect) or any specific value of precession frequency or any particular jet model. These make this method reliable and applicable to other jetted TDEs, as well as to other jetted accreting systems.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinwen Shu ◽  
Wenjie Zhang ◽  
Shuo Li ◽  
Ning Jiang ◽  
Liming Dou ◽  
...  

AbstractOptical transient surveys have led to the discovery of dozens of stellar tidal disruption events (TDEs) by massive black hole in the centers of galaxies. Despite extensive searches, X-ray follow-up observations have produced no or only weak X-ray detections in most of them. Here we report the discovery of delayed X-ray brightening around 140 days after the optical outburst in the TDE OGLE16aaa, followed by several flux dips during the decay phase. These properties are unusual for standard TDEs and could be explained by the presence of supermassive black hole binary or patchy obscuration. In either scenario, the X-rays can be produced promptly after the disruption but are blocked in the early phase, possibly by a radiation-dominated ejecta which leads to the bulk of optical and ultraviolet emission. Our findings imply that the reprocessing is important in the TDE early evolution, and X-ray observations are promising in revealing supermassive black hole binaries.


2019 ◽  
Vol 488 (2) ◽  
pp. 1878-1893 ◽  
Author(s):  
M Nicholl ◽  
P K Blanchard ◽  
E Berger ◽  
S Gomez ◽  
R Margutti ◽  
...  

ABSTRACT We present and analyse a new tidal disruption event (TDE), AT2017eqx at redshift z = 0.1089, discovered by Pan-STARRS and ATLAS. The position of the transient is consistent with the nucleus of its host galaxy; the spectrum shows a persistent blackbody temperature T ≳ 20 000 K with broad H i and He ii emission; and it peaks at a blackbody luminosity of L ≈ 1044 erg s−1. The lines are initially centred at zero velocity, but by 100 d, the H i lines disappear while the He ii develops a blueshift of ≳ 5000 km s−1. Both the early- and late-time morphologies have been seen in other TDEs, but the complete transition between them is unprecedented. The evolution can be explained by combining an extended atmosphere, undergoing slow contraction, with a wind in the polar direction becoming visible at late times. Our observations confirm that a lack of hydrogen a TDE spectrum does not indicate a stripped star, while the proposed model implies that much of the diversity in TDEs may be due to the observer viewing angle. Modelling the light curve suggests AT2017eqx resulted from the complete disruption of a solar-mass star by a black hole of ∼106.3 M⊙. The host is another Balmer-strong absorption galaxy, though fainter and less centrally concentrated than most TDE hosts. Radio limits rule out a relativistic jet, while X-ray limits at 500 d are among the deepest for a TDE at this phase.


2020 ◽  
Vol 642 ◽  
pp. A111
Author(s):  
A. Clerici ◽  
A. Gomboc

Context. The number of observed tidal disruption events is increasing rapidly with the advent of new surveys. Thus, it is becoming increasingly important to improve tidal disruption event models using different stellar and orbital parameters. Aims. We study the dynamical behaviour of tidal disruption events produced by an Sgr A*-like massive black hole by changing different initial orbital parameters, taking into account the observed orbits of S stars. Investigating different types of orbits and penetration factors is important since their variations lead to different timescales of the tidal disruption event debris dynamics, making mechanisms such as self-crossing and pancaking act strongly or weakly and thus affecting the circularisation and accretion disc formation. Methods. We performed smoothed particle hydrodynamics simulations. Each simulation consisted of modelling the star with 105 particles, and the density profile is described by a polytrope with γ = 5/3. The massive black hole was modelled with a generalised post-Newtonian potential, which takes into account the relativistic effects of the Schwarzschild space-time. Results. Our analyses find that mass return rate distributions of solar-like stars and S-like stars with the same eccentricities have similar durations, but S-like stars have higher mass return rate distributions, as expected due to their larger masses. Regarding debris circularisation, we identify four types of evolution related to the mechanisms and processes involved during circularisation: in type 1, the debris does not circularise efficiently, hence a disc is not formed or is formed after a relatively long time; in type 2, the debris slowly circularises and eventually forms a disc with no debris falling back; in type 3, the debris circularises relatively quickly and forms a disc while there is still debris falling back; in type 4, the debris quickly and efficiently circularises, mainly through self-crossings and shocks, and forms a disc with no debris falling back. Finally, we find that the standard relation of circularisation radius rcirc = 2rt holds only for β = 1 and eccentricities close to parabolic.


2008 ◽  
Vol 4 (S252) ◽  
pp. 343-344
Author(s):  
Y. Lu ◽  
Y. F. Huang ◽  
S. N. Zhang ◽  
P. Lu

AbstractWe investigate the tidal disruption of a red giant whose envelope is thought to be stripped off when it passed by a massive black hole. Since the low-density stellar envelope would be lost, the tidal disruption of a red giant by massive black hole is regarded as primarily happening in its core region. The object is called a stripped red giant (SRG). Comparing our results with the three candidate tidal disruption events detected by Chandra in 2001 and 2002, i.e., the X-ray flares of NGC 5905, RX J1242.6-1119A, and RX J1624.9+7554, we argue that the tidal disruption of a stripped red giant is strongly ruled out.


2019 ◽  
Vol 488 (4) ◽  
pp. 4816-4830 ◽  
Author(s):  
T Wevers ◽  
D R Pasham ◽  
S van Velzen ◽  
G Leloudas ◽  
S Schulze ◽  
...  

ABSTRACT We present optical spectroscopic and Swift UVOT/XRT observations of the X-ray and UV/optical bright tidal disruption event (TDE) candidate AT 2018fyk/ASASSN–18ul discovered by ASAS–SN. The Swift light curve is atypical for a TDE, entering a plateau after ∼40 d of decline from peak. After 80 d the UV/optical light curve breaks again to decline further, while the X-ray emission becomes brighter and harder. In addition to broad H, He, and potentially O/Fe lines, narrow emission lines emerge in the optical spectra during the plateau phase. We identify both high-ionization (O iii) and low-ionization (Fe ii) lines, which are visible for ∼45 d. We similarly identify Fe ii lines in optical spectra of ASASSN–15oi 330 d after discovery, indicating that a class of Fe-rich TDEs exists. The spectral similarity between AT 2018fyk, narrow-line Seyfert 1 galaxies, and some extreme coronal line emitters suggests that TDEs are capable of creating similar physical conditions in the nuclei of galaxies. The Fe ii lines can be associated with the formation of a compact accretion disc, as the emergence of low-ionization emission lines requires optically thick, high-density gas. Taken together with the plateau in X-ray and UV/optical luminosity this indicates that emission from the central source is efficiently reprocessed into UV/optical wavelengths. Such a two-component light curve is very similar to that seen in the TDE candidate ASASSN–15lh, and is a natural consequence of a relativistic orbital pericentre.


2019 ◽  
Vol 487 (3) ◽  
pp. 4136-4152 ◽  
Author(s):  
Thomas Wevers ◽  
Nicholas C Stone ◽  
Sjoert van Velzen ◽  
Peter G Jonker ◽  
Tiara Hung ◽  
...  

ABSTRACT We present new medium resolution, optical long-slit spectra of a sample of six ultraviolet (UV)/optical and 17 X-ray-selected tidal disruption event candidate host galaxies. We measure emission line ratios from the optical spectra, finding that the large majority of hosts are quiescent galaxies, while those displaying emission lines are generally consistent with star formation dominated environments; only three sources show clear evidence of nuclear activity. We measure bulge velocity dispersions using absorption lines and infer host black hole (BH) masses using the M – σ relation. While the optical and X-ray host BH masses are statistically consistent with coming from the same parent distribution, the optical host distribution has a visible peak near $M_{\rm BH} \sim 10^6 \, \mathrm{M}_\odot$, whereas the X-ray host distribution appears flat in MBH. We find a subset of X-ray-selected candidates that are hosted in galaxies significantly less luminous (Mg ∼ −16) and less massive (stellar mass ∼ 108.5–9 M⊙) than those of optical events. Using statistical tests we find suggestive evidence that, in terms of BH mass, stellar mass, and absolute magnitude, the hard X-ray hosts differ from the UV/optical and soft X-ray samples. Similar to individual studies, we find that the size of the emission region for the soft X-ray sample is much smaller than the optical emission region, consistent with a compact accretion disc. We find that the typical Eddington ratio of the soft X-ray emission is ∼ 0.01, as opposed to the optical events which have LBB ∼ LEdd. The latter seems artificial if the radiation is produced by self-intersection shocks, and instead suggests a connection to the supermassive black hole.


2019 ◽  
Vol 488 (3) ◽  
pp. 4042-4060 ◽  
Author(s):  
Stephen Thorp ◽  
Eli Chadwick ◽  
Alberto Sesana

ABSTRACT We compute the expected cosmic rates of tidal disruption events (TDEs) induced by individual massive black holes (MBHs) and by MBH binaries (MBHBs) – with a specific focus on the latter class – to explore the potential of TDEs to probe the cosmic population of sub-pc MBHBs. Rates are computed by combining MBH and MBHB population models derived from large cosmological simulations with estimates of the induced TDE rates for each class of objects. We construct empirical TDE spectra that fit a large number of observations in the optical, UV, and X-ray and consider their observability by current and future survey instruments. Consistent with results in the literature, and depending on the detailed assumption of the model, we find that LSST and Gaia in optical and eROSITA in X-ray will observe a total of 3000–6000, 80–180, and 600–900 TDEs per year, respectively. Depending on the survey, 1 to several per cent of these are prompted by MBHBs. In particular, both LSST and eROSITA are expected to see 150–450 MBHB-induced TDEs in their respective mission lifetimes, including 5–100 repeated flares. The latter provide an observational sample of binary candidates with relatively low contamination and have the potential of unveiling the sub-pc population of MBHBs in the mass range $10^5\lt M\lt 10^7\, \mathrm{M}_\odot$, thus informing future low-frequency gravitational wave observatories.


Sign in / Sign up

Export Citation Format

Share Document