scholarly journals A Review of Pyrolisis of Eceng Gondok (Water hyacinth) for Liquid Smoke

2018 ◽  
Vol 73 ◽  
pp. 05010
Author(s):  
Rita Dwi Ratnani ◽  
Widiyanto

The growth of eceng gondok (Water hyacinth) in Rawa Pening Lake showed rapid increase.. Based on the mandate of the National Lake conference in Bali and the 16th World Lake Conference, Rawa Pening is one of the fifteen national lakes which need to be treated for its conservation. Reducing number of eceng gondok plants is one of the alternatif. However, further processing is required to treat the waste of eceng gondok. One attempt is to convert eceng gondok (water hyacinth) into liquid smoke product. This article reviewes the potency of eceng gondok for liquid smoke through pyrolisis method. The liquid smoke can be used for various applications such as preservatives, antioxidants, biopesticides and perisa disinfectants. Pyrolysis is a combustion process in the absence of oxygen to produce liquid and charcoal activated charcoal products called activated charcoal. The pyrolysis process is generally carried out at a temperature range between 200-700 °C. The pyrolysis process is one of the methods chosen in order to strive for development that suppresses the formation of CO gas but releases water vapor. Pyrolysis at a temperature of 300-700 ° C, produces the most dominant compounds 1.6 Anhyro-beta-d-glucopyranose, phenol, and acetic acid. The reaction that occurs during pyrolysis of this temperature is the release of water vapor instead of carbon gas so that it is safe for the environment. The discussion on this article focused on the production of liquid smoke from eceng gondok biomass.

2016 ◽  
Vol 9 (1) ◽  
pp. 64-72
Author(s):  
Fauziati Fauziati ◽  
Eldha Sampepana

Palm shell liquid smoke obtained by pyrolysis and redestilasi still produce a pungent smoke flavor and color of yellow to brownish yellow so that the necessary research purification of smoke that can be used as ingredients other than preservatives, such as antiseptic hand wash. The research objective is to reduce the stinging liquid smoke aroma, color is tawny and to identify the characterization of the active components of liquid smoke shell oil refining results in Gas Chromatography Mass Spectrometry (GC-MS). The purification process of liquid smoke with redistilled at a temperature of 2000C and by adding 4.5% zeolite adsorbent made three (3) times the resulting liquid smoke of distillate and residue. Liquid smoke produced from distillate and residue are added activated charcoal as much as 9%, 10.5% and 12%, then stirred with a shaker subsequently allowed to stand for 6 days and 10 days The results of the study showed that liquid smoke purification results of the residue by the addition of activated charcoal as 12% and the time saved for 10 days (A2B2C3) gives flavor and color by 1.94 of 1.84 is odorless, yellowish white color and clarity. While the characteristics of the active components of purification results are predominantly acetic acid and phenol compounds of residues that serve as preservatives, antibacterial and antioxidant compounds while PAH (Polycyclic Aromatic Hydrocarbon), namely tar, benzoperen, gualakol and siringoll (aroma causes) undetectedABSTRAKAsap cair cangkang sawit yang diperoleh melalui proses pirolisis dan redestilasi masih menghasilkan aroma asap menyengat dan warna kuning hingga kuning kecoklatan sehingga diperlukan penelitian pemurnian asap yang dapat digunakan sebagai bahan lain selain pengawet, seperti antiseptik pencuci tangan. Tujuan penelitian adalah  untuk mengurangi aroma asap cair yang menyengat, warna yang masih kuning kecoklatan dan untuk  mengidentifikasi karakterisasi komponen aktif asap cair cangkang sawit hasil pemurnian secara Kromatografi Gas Spektrometri Massa (GC-MS). Proses  pemurnian asap cair dengan  redistilasi pada suhu 2000C dan dengan menambahkan adsorben zeolit 4,5% yang dilakukan sebanyak 3 (tiga) kali  dihasilkan asap cair dari Destilat dan Residu . Asap cair  yang dihasilkan dari destilat dan residu ditambahkan arang aktif sebanyak 9%,10,5% dan 12%  kemudian diaduk dengan shaker selanjutnya didiamkan selama 6 hari dan 10 hari .Hasil penelitian menunjukkan bahwa asap cair hasil pemurnian dari residu dengan penambahan arang aktif sebanyak 12% dan waktu simpan selama 10 hari ( A2B2C3 ) memberikan aroma sebesar 1,94 dan warna sebesar 1,84 adalah tidak berbau ,  warna putih kekuningan dan jernih . Sedangkan  karakteristik  komponen aktif hasil pemurnian yang paling dominan  adalah  senyawa acetic acid dan phenol  dari residu yang berfungsi sebagai bahan pengawet, antibakteri dan antioksidan sedangkan senyawa PAH (Polycyclic Aromatic Hydrocarbon) yaitu tar, benzoperen,  gualakol  dan siringoll ( penyebab aroma ) tidak terdeteksi . Kata kunci : asap cair, cangkang sawit, komponen aktif, pemurnian, redestilasi 


2019 ◽  
Vol 29 (4) ◽  
pp. 171
Author(s):  
Novia Qomariyah ◽  
Y Retnani ◽  
A Jayanegara ◽  
E Wina ◽  
I G Permana

Biochar and liquid smoke may be utilized as feed additives that potentially used as substitutes for antibiotics. These products are derived from the pyrolysis process that utilizes agricultural, plantation and wood residues. This paper aims to review research results regarding the use of biochar and liquid smoke as feed additives in both non-ruminants and ruminants. Information on the use of of biochar and liquid smoke in livestock are available such as the use of 0.5-1 g bamboo charcoal/ kg goat feed increased growth; addition of 0.2-0.6% corn cobs char to chicken feed showed significant increase in body weight; the addition of 0.6% biochar/ kg feed to local cattle feed increased body weight; the use of activated charcoal containing wood vinegar liquid can reduce cryptosporidiosis in goats and cattle. The opportunity to use agricultural and plantation residues as raw materials for generating biochar and liquid smoke is one of the breakthroughs in realizing the concept of sustainable and environmentally friendly of bioindustrial agriculture. The use of biochar and liquid smoke from agricultural and plantation residues is expected to increase livestock productivity.


2020 ◽  
Vol 2 (2) ◽  
pp. 61-64
Author(s):  
Karelius Karelius ◽  
Lilis Rosmainar ◽  
Angeline Novia Toemon ◽  
Made Dirgantara

The liquid smoke produced from the torrefaction process of oil palm shells has the potential to be used as an antiseptic base for hand sanitizer and disinfectant products. It is due to its high phenol and acetic acid content. Apart from phenol and acetic acid, there are many other compounds that must be separated in the hope of obtaining liquid smoke with the main components of acetic acid and phenol, which function as antibacterial agents. This research begins with the production of liquid smoke through a torrefaction process. The liquid smoke obtained is distilled at 150 oC and followed by adsorption with activated charcoal for the purification process. The pH value and acetic acid content in the purified liquid smoke were determined and analyzed using GC-MS to determine the chemical compounds. The pH value has decreased after the refining process by distillation, and activated charcoal is inversely proportional to the increase in acetic acid levels after purification. Based on GC-MS analysis results, it can be seen that the levels of acetic acid, phenol, propanoic acid, and 2-propanone increased after distillation. The loss of 1,2-Benzenediol and 2-Furancarboxaldechde compounds shows that distillation of liquid smoke at 150oC is effective for separating the heavy fraction of liquid smoke. Furthermore, the distilled liquid smoke is filtered using activated charcoal. The GC-MS analysis results showed that the filtration results with activated charcoal could increase acetic acid and propanoic acid levels in liquid smoke.


Author(s):  
A. S. Farlenkov ◽  
N. A. Zhuravlev ◽  
Т. A. Denisova ◽  
М. V. Ananyev

The research uses the method of high-temperature thermogravimetric analysis to study the processes of interaction of the gas phase in the temperature range 300–950 °C in the partial pressure ranges of oxygen 8.1–50.7 kPa, water 6.1–24.3 kPa and hydrogen 4.1 kPa with La1–xSrxScO3–α oxides (x = 0; 0.04; 0.09). In the case of an increase in the partial pressure of water vapor at a constant partial pressure of oxygen (or hydrogen) in the gas phase, the apparent level of saturation of protons is shown to increase. An increase in the apparent level of saturation of protons of the sample also occurs with an increase in the partial pressure of oxygen at a constant partial pressure of water vapor in the gas phase. The paper discusses the causes of the observed processes. The research uses the hydrogen isotope exchange method with the equilibration of the isotope composition of the gas phase to study the incorporation of hydrogen into the structure of proton-conducting oxides based on strontium-doped lanthanum scandates. The concentrations of protons and deuterons were determined in the temperature range of 300–800 °C and a hydrogen pressure of 0.2 kPa for La0.91Sr0.09ScO3–α oxide. The paper discusses the role of oxygen vacancies in the process of incorporation of protons and deuterons from the atmosphere of molecular hydrogen into the structure of the proton conducting oxides La1–xSrxScO3–α (x = 0; 0.04; 0.09). The proton magnetic resonance method was used to study the local structure in the temperature range 23–110 °C at a rotation speed of 10 kHz (MAS) for La0.96Sr0.04ScO3–α oxide after thermogravimetric measurements in an atmosphere containing water vapor, and after exposures in molecular hydrogen atmosphere. The existence of proton defects incorporated into the volume of the investigated proton oxide from both the atmosphere containing water and the atmosphere containing molecular hydrogen is unambiguously shown. The paper considers the effect of the contributions of the volume and surface of La0.96Sr0.04ScO3–α oxide on the shape of the proton magnetic resonance spectra.


2021 ◽  
Vol 1028 ◽  
pp. 326-330
Author(s):  
Otong Nurhilal ◽  
Sahrul Hidayat ◽  
Dadan Sumiarsa ◽  
Maykel Manawan ◽  
Risdiana

The quality of the carbon material for application of electrodes in the battery is indicated by its ability to intercalate ions, atoms or molecules. Graphite is a carbon material with good intercalation capability. In this research, a carbon material in the form of activated charcoal produced from biomass of water hyacinth has been prepared, which is carbonized at various temperatures of 400, 500, and 600 °C with three different activators of ZnCl2, KOH and H3PO4. The activated charcoal will be used as a cathode composite in lithium sulfur batteries. To determine the quality of the activated charcoal, the structure properties of activated charcoal were characterized using X-ray diffraction (XRD). Several parameters that are determined from XRD data included the degree of crystallinity, and the degree of graphitization (Y). The degree of crystallinity was found in the ranges between 5.56 and 12.6%, where activated charcoal was dominated by amorphous structures. The value of the degree of graphitization was about 36%.


1976 ◽  
Vol 39 (12) ◽  
pp. 819-822 ◽  
Author(s):  
B. J. JUVEN

A strain of Lactobacillus brevis, L-3, was isolated from a blown can of grapefruit segments in sugar syrup; it caused spoilage of citrus products having pH values lower than 3.5. When inoculated into orange (pH 3.38) and grapefruit (pH 2.99) juices, after 5 h at 30 C L-3 produced 15 and 22 μg diacetyl/ml, respectively, and off-flavor was detectable. L-3 grew in APT broth acidified to pH 3.0 with citric, hydrochloric, phosphoric, or tartaric acid. However, its growth was inhibited at pH 3.6 if the acidulant was lactic acid, while with acetic acid inhibition occurred at a pH between 3.7 and 4.0. The thermal resistance of L-3 in orange serum (pH 3.4) was studied in the temperature range of 52 to 60 C: a z value of 8.3 was obtained. A simple and reliable capillary technique for studying the thermal resistance of gas-producing organisms in liquid foods and media is presented.


2018 ◽  
Vol 2 (3) ◽  
pp. 191 ◽  
Author(s):  
Mohammad Wijaya. M ◽  
Muhammad Wiharto ◽  
Muhammad Anwar

<p>Potential of cacao resources at Indonesian is very dependent on the production of cacao produced by farmers and plantation availability. However, the cacao processing results are still not optimal to increase the cacao production. This is due to the disruption of pests and the number of cacao farmers over land functions for fast growing plants. Processing cacao produced cacao waste and with the use of pyrolysis technology is able to cope with the accumulation of plantation waste. This combustion results in liquid smoke of cacao (cacao vinegar) into distillate, charcoal. This study used pyrolysis temperature between 100-500 °C. The aim of this research is to analyze the cocoa waste and the results are cellulose content 17,27%, lignin 52,02% and hemicellulose 19,56%. The results of GC-MS analysis for cacao vinegar of Distric Wajo are acetic acid, n butane, methyl ester, propanoic acid, butanoic acid, cyclopenanone, 2 methyl pyridine, acetyloxy 2 propanone, butyrolactone, tetrahydro 2 furan methanol, 2,3 dimethyl 2 cyclopentene 1 on and Mequinol. The water content of the charcoal of cacao shell from Wajo district is 3.42%. The analysis results of the bound carbon content of activated charcoal of cacao shell is 54.45%. The EDS analysis for cacao shell from Wajo district resulted in C: 61.12%, O: 36.65%, Si: 0.59%, P: 1.48% and Al: 0.17%. Utilization of cocoa shell waste using pyrolysis technology can reduce carbon emissions to the environment. So that the development of everything can continue and the sustainability of forest remain sustainable.</p><p> </p>


2020 ◽  
Vol 9 (1) ◽  
pp. 164-171

This study aimed to investigate the use of water hyacinth to produce liquid smoke. The study observes the temperature and time variables of yield, pH, density, and refractive index in the production of liquid smoke from water hyacinth. The sequence of the work is as follows: first, water hyacinth was cut into 5 cm sections and then sun-dried for 2–3 d, depending on the weather. Next, 550 g of dried water hyacinth was added to the pyrolysis reactor. The temperature variations were 200°C, 400°C, and 600°C, and the time variations were 1, 4, and 7 h. As a result, liquid smoke was produced with varying yield, pH, densities, and refractive indices. The best results in this research are liquid smoke pyrolysis at a temperature of 400°C and 4 h with the acquisition of a yield of 93 mL, pH 2–4, a density of 1.080,8 gr/mL, and a refractive index of 1.339,6, with chemical component 41.45% total acid, 2.44% phenol and 56.10% carbonyl.


2021 ◽  
Vol 56 (3) ◽  
pp. 63-71
Author(s):  
Nora Idiawati ◽  
Gracelia Monica ◽  
Mega Sari Juane Sofiana ◽  
Ikha Safitri ◽  
Sepridawati Siregar

In Batu Ampar, the charcoal industry, West Kalimantan, used Rhizophora sp. mangrove to produce liquid acid with mangrove stem bark waste as a side product. Pyrolysis of liquid smoke of mangrove stem bark waste at a temperature of 4000C for 6 hours resulted in a yield of 33.97% with pH, specific gravity, and color were 2.8, 1.004, and brown, respectively. Analysis of GC-MS showed that liquid smoke without distillation has 16 chemical compounds where the main components were acetone (12.32%), acetic acid (11.62%), 2-furancarboxaldehyde (26.72%), 5-methyl furfural (13.87%) and phenol, 2-methoxy (13.31%). Furthermore, this liquid smoke is distilled at 1000C to produces residual liquid smoke and distillate liquid smoke. The residual liquid smoke resulted in a yield of 95.8% with characteristics of pH, specific gravity, and color were the lowest 2.73, 1.004, and dark brown, respectively. The liquid smoke residue contained 12 chemical compounds where the main components were butanal, 3-hydroxy- (17.46%), acetone (17.15%), acetic acid (32.27 %), and 2-furancarboxaldehyde (13.28%). Distillate liquid smoke resulted in a yield of 4.2% with pH, specific gravity, and color characteristics, which were 2.8, 1.001, and yellow, respectively. This liquid smoke contained nine chemical compounds, with the main components were ethyl ester (26.69%) and ethylene glycol (64.70%). Based on the GC-MS data, the liquid smoke from mangrove leather waste did not contain poly-aromatic hydrocarbon (PAH) or benzopyrene compounds.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Lia Aprilia ◽  
Ratno Nuryadi ◽  
Dwi Gustiono ◽  
Nurmahmudi ◽  
Arief Udhiarto ◽  
...  

Resonance frequency shift of a zinc oxide- (ZnO-) functionalized microcantilever as a response to carbon monoxide (CO) gas has been investigated. Here, ZnO microrods were grown on the microcantilever surface by a hydrothermal method. The measurement of resonance frequency of the microcantilever vibrations due to the gas was carried out in two conditions, that is, gas flow with and without air pumping into an experiment chamber. The results show that the resonance frequency of the ZnO-functionalized microcantilever decreases because of CO in air pumping condition, while it increases when CO is introduced without air pumping. Such change in the resonance frequency is influenced by water vapor condition, and a possible model based on water-CO combination was proposed.


Sign in / Sign up

Export Citation Format

Share Document