scholarly journals CO2-brine injectivity tests in high co2 content carbonate field, sarawak basin, offshore east Malaysia

2019 ◽  
Vol 89 ◽  
pp. 04005 ◽  
Author(s):  
A Giwelli ◽  
MZ Kashim ◽  
MB Clennell ◽  
L Esteban ◽  
R Noble ◽  
...  

We conducted relatively long duration core-flooding tests on three representative core samples under reservoir conditions to quantify the potential impact of flow rates on fines production/permeability change. Supercritical CO2 was injected cyclically with incremental increases in flow rate (2─14 ml/min) with live brine until a total of 7 cycles were completed. To avoid unwanted fluid-rock reaction when live brine was injected into the sample, and to mimic the in-situ geochemical conditions of the reservoir, a packed column was installed on the inflow accumulator line to pre-equilibrate the fluid before entering the core sample. The change in the gas porosity and permeability of the tested plug samples due to different mechanisms (dissolution and/or precipitation) that may occur during scCO2/live brine injection was investigated. Nuclear magnetic resonance (NMR) T2 determination, X-ray CT scans and chemical analyses of the produced brine were also conducted. Results of pre- and post-test analyses (poroperm, NMR, X-ray CT) showed no clear evidence of formation damage even after long testing cycles and only minor or no dissolution (after large injected pore volumes (PVs) ~ 200). The critical flow rates (if there is one) were higher than the maximum rates applied. Chemical analyses of the core effluent showed that the rock samples for which a pre-column was installed do not experience carbonate dissolution.

2020 ◽  
Vol 17 (2) ◽  
pp. 1207-1213 ◽  
Author(s):  
Muhammad Aslam Md Yusof ◽  
Mohamed Zamrud Zainal ◽  
Ahmad Kamal Idris ◽  
Mohamad Arif Ibrahim ◽  
Shahrul Rizzal M. Yusof ◽  
...  

Sequestration of Carbon Dioxide (CO2) in sandstone formation filled by brine aquifers is widely considered a promising option to reduce the CO2 concentration in the atmosphere. However, the injection of reactive CO2 into sandstone rock creates injectivity problems because of CO2-brine-rock interactions. The injection flow rate and CO2-fluid-rock exposure conditions are important factors that control the intensity of the reactions. The focus of this research was therefore on evaluating the petrophysical modifications in sandstone core samples at distinct flow rates using different CO2 injection schemes. In this research, the porosity and permeability of Berea sandstone samples were measured using PoroPerm equipment. The core samples were initially saturated with dead brine (30 g/l NaCl) followed by injection either by supercritical CO2 (scCO2) only, CO2-saturated brine only and CO2-saturated brine together with scCO2 at different flow rates. During injection, the differential pressure between the core inlet face and outlet face were recorded. Fines from the produced effluent were separated and collected for characterization using Field Emission Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy (FESEM-EDX). Post-injection porosity and permeability of the core samples were measured and compared with the pre-injection data to monitor changes. All sandstone core specimens showed favorable storage capability features in the form of capillary residual trapping with residual CO2 saturation ranging from 40% to 48%. In addition, all samples experienced important changes in their petrophysical characteristics, which were more pronounced in the event of absolute porosity and permeability, which decreased from 20%–51% to 4%–32%. The suggested harm mechanism is primarily owing to salt precipitation and fines migration. Supported by FESEM images, the proposed damage mechanism is mainly due to salt precipitation and fines migration.


2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Chimgozirim Prince Ejim

Abstract Produced water reinjection (PWRI) is one of the methods employed by oilfield operators to optimize production while conforming to increasingly stringent produced water disposal policies. Different produced water species from different facilities also have different salinities as a result of entrainment of treatment fluids, precipitation of salts at surface conditions, etc. During re-injection operations, the salinity of the injection fluid has to be accounted for as it affects the production. Previous studies have focused on laboratory analysis by core flooding. While this approach is indeed reasonable and offers a first-hand impression of the reservoir conditions, it presents a problem of cost and the age-old opinion that the core sample may not be representative of the entire reservoir. Therefore, I have employed a computer modeling approach using a commercial simulator to analyze the influence of salinity on production during produced water re-injection. It was found that the salinity truly affects production. Re-injection of produced water with salinity equal to the reservoir salinity of 1000 ppm was compared to three cases of re-injection of produced water from extraneous sources having salinities of 100 ppm, 500 ppm and 10000 ppm. It was found that salinity of 10000 ppm gave the best oil production performance for the reservoir model; a daily rate of 40 STB/DAY and an oil cumulative production of 40,000 STB. Incremental salinity of injected produced water led to incremental oil recovery. The mechanism resulting in incremental recovery was attributed to the increase in viscosity and decrease in mobility as the salinity increases.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1109-1124 ◽  
Author(s):  
Tobias Kling ◽  
Da Huo ◽  
Jens-Oliver Schwarz ◽  
Frieder Enzmann ◽  
Sally Benson ◽  
...  

Abstract. Various geoscientific applications require a fast prediction of fracture permeability for an optimal workflow. Hence, the objective of the current study is to introduce and validate a practical method to characterize and approximate single flow in fractures under different stress conditions by using a core-flooding apparatus, in situ X-ray computed tomography (CT) scans and a finite-volume method solving the Navier–Stokes–Brinkman equations. The permeability of the fractured sandstone sample was measured stepwise during a loading–unloading cycle (0.7 to 22.1 MPa and back) to validate the numerical results. Simultaneously, the pressurized core sample was imaged with a medical X-ray CT scanner with a voxel dimension of 0.5  ×  0.5  ×  1.0 mm3. Fracture geometries were obtained by CT images based on a modification of the simplified missing attenuation (MSMA) approach. Simulation results revealed both qualitative plausibility and a quantitative approximation of the experimentally derived permeabilities. The qualitative results indicate flow channeling along several preferential flow paths with less pronounced tortuosity. Significant changes in permeability can be assigned to temporal and permanent changes within the fracture due to applied stresses. The deviations of the quantitative results appear to be mainly caused by both local underestimation of hydraulic properties due to compositional matrix heterogeneities and the low CT resolution affecting the accurate capturing of sub-grid-scale features. Both affect the proper reproduction of the actual connectivity and therefore also the depiction of the expected permeability hysteresis. Furthermore, the threshold value CTmat (1862.6 HU) depicting the matrix material represents the most sensitive input parameter of the simulations. Small variations of CTmat can cause enormous changes in simulated permeability by up to a factor of 2.6 ± 0.1 and, thus, have to be defined with caution. Nevertheless, comparison with further CT-based flow simulations indicates that the proposed method represents a valuable method to approximate actual permeabilities, particularly for smooth fractures (< 35 µm). However, further systematic investigations concerning the applicability of the method are essential for future studies. Thus, some recommendations are compiled by also including suggestions of comparable studies.


1985 ◽  
Vol 25 (06) ◽  
pp. 909-916 ◽  
Author(s):  
A.T. Watson ◽  
P.D. Kerig ◽  
R.W. Otter

Abstract Homogeneous core samples are needed for EOR experiments. We have devised a simple test for detecting the presence of nonuniformities in cores. The test consists of presence of nonuniformities in cores. The test consists of measuring the pressure drop across the core during a two-phase immiscible displacement experiment. We show that for a constant injection rate, the pressure drop will be linear with time provided that the core is homogeneous. In situations for which the initial section of the core is homogeneous, but the properties are not uniform in a latter section of the core, the location of the position where the rock properties fast change may be approximately determined. The effect of heterogeneities on the pressure-drop profile is demonstrated with analytical solutions and profile is demonstrated with analytical solutions and laboratory experiments. Introduction Core samples are used routinely for EOR or relative permeability experiments. For such experiments, selection permeability experiments. For such experiments, selection of a homogeneous core sample is necessary. Visual inspection of the core is not sufficient to ensure homogeneity. Often, vugs or shale barriers may be present, which may invalidate experimental results. In this paper, a simple test to detect the presence of core heterogeneities is devised. The scale of heterogeneities considered corresponds to the usual macroscopic description of porous medium properties. The properties of a porous medium (e.g., the properties. The properties of a porous medium (e.g., the porosity and permeability) at any particular location refer porosity and permeability) at any particular location refer to average quantities for some appropriate (small) representative volume element. In this way, each (locally averaged) property is defined at every point within the medium, the collection of which defines the representation of each property as a function of position. If each macroscopic property has the same value at all positions, the medium is said to be homogeneous. Otherwise, the medium is heterogeneous. A more complete discussion of macroscopic properties and heterogeneities can be found in Refs. 1 through 3. The macroscopic scale is a natural one to use for core selection because attempts to model coreflood experiments or to estimate properties of the porous medium on the basis of measured flow data generally will use mathematical models that use macroscopic properties. A homogeneous core sample is necessary for the experimental determination of relative permeabilities from displacement experiments. Explicit methods for estimating relative permeabilities from displacement data are based on the permeabilities from displacement data are based on the Buckley-Leverett model, in which the core is assumed to be homogeneous. The absolute permeability generally is determined from a single-phase flow experiment and thus represents an average value for the entire core. If the core is not homogeneous, so that the absolute permeability takes on different values in different locations permeability takes on different values in different locations in the core, errors will appear in the relative permeability estimates. Although the magnitude of the errors will depend on many factors, a macroscopically homogeneous sample is always preferred. Note that heterogeneities may also be defined on a microscopic scale. A porous medium that is macroscopically homogeneous may be microscopically heterogeneous. In fact, this typically would be the case because few real porous media structures are microscopically homogeneous. In this paper, we develop a test for detecting the presence of macroscopic heterogeneities in core samples. presence of macroscopic heterogeneities in core samples. The test is conducted by displacing the fluid that initially saturates the porous medium with a second fluid that is immiscible with the displaced fluid. The pressure drop across the core is recorded up to the time of breakthrough of the displacing fluid. The test is based on the observation that, with a constant injection rate and incompressible fluids, the pressure drop will be linear with time provided that the core is homogeneous. It is also shown provided that the core is homogeneous. It is also shown that, if the porosity and permeability for a heterogeneous core may be approximated as functions of the longitudinal spatial dimension, the pressure drop will be linear with time provided that the region in which both fluid phases are flowing simultaneously has uniform properties. The detection of heterogeneities by this method is discussed and illustrated with analytical solutions for the displacement process and with laboratory experimental data. Theory We consider here a displacement experiment with two incompressible fluids. Initially, the core is saturated with one fluid and the other fluid is injected at one end. For example, if the core initially contains only oil or air, water might be injected at one end. The core could contain the irreducible saturation of the displacing fluid initially, although this is not experimentally convenient and is not necessary for conducting the test. The pressure drop across the core is recorded through the time of breakthrough of the displacing fluid at the core outlet. SPEJ P. 909


2020 ◽  
Author(s):  
Marat Korsik ◽  
Edwin Tse ◽  
David Smith ◽  
William Lewis ◽  
Peter J. Rutledge ◽  
...  

<p></p><p>We have discovered and studied a <i>tele</i>substitution reaction in a biologically important heterocyclic ring system. Conditions that favour the <i>tele</i>-substitution pathway were identified: the use of increased equivalents of the nucleophile or decreased equivalents of base, or the use of softer nucleophiles, less polar solvents and larger halogens on the electrophile. Using results from X-ray crystallography and isotope labelling experiments a mechanism for this unusual transformation is proposed. We focused on this triazolopyrazine as it is the core structure of the <i>in vivo </i>active anti-plasmodium compounds of Series 4 of the Open Source Malaria consortium.</p> <p> </p> <p>Archive of the electronic laboratory notebook with the description of all conducted experiments and raw NMR data could be accessed via following link <a href="https://ses.library.usyd.edu.au/handle/2123/21890">https://ses.library.usyd.edu.au/handle/2123/21890</a> . For navigation between entries of laboratory notebook please use file "Strings for compounds in the article.pdf" that works as a reference between article codes and notebook codes, also this file contain SMILES for these compounds. </p><br><p></p>


Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


1972 ◽  
Vol 27 (7) ◽  
pp. 759-763 ◽  
Author(s):  
M. W. G. De Bolster ◽  
W. L. Groeneveld

A number of new solvates and adducts containing bisphenyldimethylaminophosphine oxide is reported. The solvates have the general formula M[(C6H5)2P(O)N(CH3)2]42+(anion-)2, in which M = Mg, Ca, Mn, Fe, Co, Ni, Cu, Zn and Cd, and the anions are ClO4- and BF4-. The adducts have the general formula M[(C6H5)2P(O)N(CH3)2]2Cl2, where M stands for the same series of metals.The compounds are characterized and identified by chemical analyses and physical measurements.Ligand-field and vibrational spectra have been investigated; values for the ligand-field parameters are reported. It is concluded that coordination takes place via the oxygen atom of the ligand.X-ray powder patterns were used in combination with ligand-field spectra to deduce the coordination around the metal ions.The interesting behaviour of the nickel (II) chloride adduct upon heating is discussed and it is shown that both a square pyramidal and a tetrahedral modification exists.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Carlos Alberto Ríos-Reyes ◽  
German Alfonso Reyes-Mendoza ◽  
José Antonio Henao-Martínez ◽  
Craig Williams ◽  
Alan Dyer

This study reports for the first time the geologic occurrence of natural zeolite A and associated minerals in mudstones from the Cretaceous Paja Formation in the urban area of the municipality of Vélez (Santander), Colombia. These rocks are mainly composed of quartz, muscovite, pyrophyllite, kaolinite and chlorite group minerals, framboidal and cubic pyrite, as well as marcasite, with minor feldspar, sulphates, and phosphates. Total organic carbon (TOC), total sulfur (TS), and millimeter fragments of algae are high, whereas few centimeters and not biodiverse small ammonite fossils, and other allochemical components are subordinated. Na–A zeolite and associated mineral phases as sodalite occur just beside the interparticle micropores (honeycomb from framboidal, cube molds, and amorphous cavities). It is facilitated by petrophysical properties alterations, due to processes of high diagenesis, temperatures up to 80–100 °C, with weathering contributions, which increase the porosity and permeability, as well as the transmissivity (fluid flow), allowing the geochemistry remobilization and/or recrystallization of pre-existing silica, muscovite, kaolinite minerals group, salts, carbonates, oxides and peroxides. X-ray diffraction analyses reveal the mineral composition of the mudstones and scanning electron micrographs show the typical cubic morphology of Na–A zeolite of approximately 0.45 mμ in particle size. Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → sodalite → Na–A zeolite. A literature review shows that this is an unusual example of the occurrence of natural zeolites in sedimentary marine rocks recognized around the world.


2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


Sign in / Sign up

Export Citation Format

Share Document