scholarly journals Characterization and experimental comparison of commercial PEMFC stacks for marine applications

2022 ◽  
Vol 334 ◽  
pp. 04003
Author(s):  
Eleonora Gadducci ◽  
Thomas Lamberti ◽  
Loredana Magistri ◽  
Massimo Rivarolo ◽  
Andrea Dellacasa ◽  
...  

PEM Fuel Cells are considered among the most promising technologies for hydrogen utilization in both stationary and automotive applications. The number of FC installations on board ships – alone or in hybrid configuration with batteries – is increasing significantly, although international regulations that drive their installation are still missing. In this scenario, the project TecBia aims to identify a dedicated test protocol and the best commercial PEMFC technology for marine applications, assessing the integration of a 140 kW PEMFC system on the Zero Emission Ultimate Ship (ZEUS) vessel. The system design and technology provider has been chosen after a technical comparison based on a dedicated experimental campaign. The experimental campaign had two goals: (i) analyse the performance of the different PEMFC systems to define the best characteristics for maritime applications; (ii) verify the compliance with naval requirements with reference to current and future standards. The present study shows the resulting test protocol for FC Systems (FCS) for maritime applications, defined starting from the existing international regulations on FCS installations and on naval environment requirements; the results of its application on the commercial system chosen for the installation on ZEUS are reported.

2015 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Verma ◽  
R. Pitchumani

Polymer electrolyte membrane (PEM) fuel cells are well suited for automotive applications compared to other types of fuel cells owing to their faster transient response and low-temperature operation. Due to rapid change in loads during automotive applications, study of dynamic behavior is of paramount importance. This study focuses on elucidating the transient response of a PEM fuel cell for specified changes in operating parameters, namely, voltage, pressure, and stoichiometry at the cathode and the anode. Transient numerical simulations are carried out for a single-channel PEM fuel cell to illustrate the response of power as the operating parameters are subjected to specified changes. These parameters are also optimized with an objective to match the power requirements of an automotive drive cycle over a certain period of time.


Energy ◽  
2010 ◽  
Vol 35 (2) ◽  
pp. 1164-1171 ◽  
Author(s):  
T.J. Leo ◽  
J.A. Durango ◽  
E. Navarro

2020 ◽  
Vol 24 (1) ◽  
pp. 529-544
Author(s):  
Martin Tomas ◽  
Pavel Novotny ◽  
Fatemeh Gholami ◽  
Ondrej Tucek ◽  
Frantisek Marsik

Abstract The high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) based on the polybenzimidazole (PBI) membrane doped with phosphoric acid (H3PO4) presents a promising route in the development of fuel cell technology. The higher operating temperature of 160–200 °C results in an increased tolerance of the platinum catalyst to the carbon monoxide, an improved electrode kinetics, a higher-grade heat produced by the fuel cell, and a simplified water management due to the absence of liquid water in the system. In this study, the accelerated stress test protocol (AST) corresponding to the Driving Duty Cycle was used to characterize two sets of commercial MEAs, by Danish Power Systems Ltd. and FuMA-tech GmbH, respectively. Performance characteristics prior to and after the AST procedure were measured. The changes in the resistivity of the MEA were examined by electrochemical impedance spectroscopy (EIS). The EIS data were analysed and interpreted by a suitable equivalent circuit that consisted of a resistor and the Voigt’s structure in series with constant phase elements. Conducted experiments and their analysis showed suitability of the HT-PEMFC technology in applications where dynamical load of the cell is expected. Moreover, the lower number of AST cycles did not seriously affect the cell performance. As expected, with increasing number of AST cycles, decrease in the cell performance was observed. In general, presented comparative study is expected to provide an extension of existing data for present and future development of diagnostic in the field of HT-PEMFC.


2020 ◽  
Vol 167 (12) ◽  
pp. 124520 ◽  
Author(s):  
Robert Marić ◽  
Christian Gebauer ◽  
Markus Nesselberger ◽  
Frédéric Hasché ◽  
Peter Strasser

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3312 ◽  
Author(s):  
Giuliano Rancilio ◽  
Alexandre Lucas ◽  
Evangelos Kotsakis ◽  
Gianluca Fulli ◽  
Marco Merlo ◽  
...  

The interest in modeling the operation of large-scale battery energy storage systems (BESS) for analyzing power grid applications is rising. This is due to the increasing storage capacity installed in power systems for providing ancillary services and supporting nonprogrammable renewable energy sources (RES). BESS numerical models suitable for grid-connected applications must offer a trade-off, keeping a high accuracy even with limited computational effort. Moreover, they are asked to be viable in modeling for real-life equipment, and not just accurate in the simulation of the electrochemical section. The aim of this study is to develop a numerical model for the analysis of the grid-connected BESS operation; the main goal of the proposal is to have a test protocol based on standard equipment and just based on charge/discharge tests, i.e., a procedure viable for a BESS owner without theoretical skills in electrochemistry or lab procedures, and not requiring the ability to disassemble the BESS in order to test each individual component. The BESS model developed is characterized by an experimental campaign. The test procedure itself is framed in the context of this study and adopted for the experimental campaign on a commercial large-scale BESS. Once the model is characterized by the experimental parameters, it undergoes the verification and validation process by testing its accuracy in simulating the provision of frequency regulation. A case study is presented for the sake of presenting a potential application of the model. The procedure developed and validated is replicable in any other facility, due to the low complexity of the proposed experimental set. This could help stakeholders to accurately simulate several layouts of network services.


2020 ◽  
Author(s):  
Kannihalli Bhaskar ◽  
Jenoris Muthiya Solomon ◽  
Ravishankar Sathyamurthy ◽  
Shridhar Anaimuthu ◽  
Nadana Kumar Vinayagam

Sign in / Sign up

Export Citation Format

Share Document