scholarly journals Knowledge Based Engineering for Hydrogen Gas Turbines and Burners Design: a review

2022 ◽  
Vol 334 ◽  
pp. 05001
Author(s):  
Corallo Angelo ◽  
Dibiccari Carla ◽  
Lazoi Mariangela ◽  
Starace Giuseppe ◽  
Laforgia Domenico

Hydrogen gas turbines and burners need high attention and their appropriate realization, yet during their design, can lead important benefits for the whole sector. Realizing the best design, the first time, reduces reworks and requests of design changes from the manufacturing departments. In this field, Knowledge Based Engineering is a good strategy for embedding, in an automatic way, experts’ knowledge into CAD models during the design of a component. It enables a reduction of human errors and costs in several design tasks and improving the final quality of a component model. With these premises, the aim to the study is to lead improvements and appropriate actions in the design and re-configuration of hydrogen power generation systems (i.e. gas turbines and burners) by means of KBE, leading improvements yet in this early phase of the global race for hydrogen. A systematic literature review is carried out to explore the current state of art for the application of KBE for the design of turbines and burners in different industrial sectors. Evidences from the practice are collected in a structured classification and elaborated and summarized for application in the design of gas turbines and burners for the hydrogen production.

2021 ◽  
pp. 198-205
Author(s):  
Bian Xiuwu Maochun

Manufacturing firms have been compelled to invest heavily in digitizing and optimizing their technical and manufacturing operations as a result of mass customization. When developing and introducing new goods, not only must manufacturing procedures be computerized, but also information of how the products must be developed and manufactured based on client needs must be applied. One major academic issue is to assist the industry in ensuring that stakeholders understand the background information of automated engineering all through the production process. The goal of the study described in this article is to provide a foundation for a connectivity perspective of Knowledge-Based Engineering (KBE). The use of graph theory in conjunction with content-based filtering methods is used to handle network creation and contextualization, which are fundamental ideas in connectivism. To enable a connectivity management culture, the article demonstrates how engineering information in spreadsheet, knowledge representation, and Computer Aided Design (CAD) models may be infiltrated and displayed as filtering graphs.


Author(s):  
Mathieu Lebouteiller ◽  
Jérémy Boxberger ◽  
Samuel Gomes ◽  
Nadhir Lebaal ◽  
Daniel Schlegel

The issue of improving quality, costs and delays indicators in design and manufacturing is more relevant than ever in the industry. After lean manufacturing, well known in production process, the lean engineering approach is being implemented today in the field of design, taking the name of lean product development. The management of knowledge and know-how (existing, new or to be acquired) is the heart of lean engineering. In our suggested methodology this is implemented through a new generation of tools called Knowledge Configuration Management (KCM) and Knowledge Extraction Assistant (KEA). KCM tools are lean engineering components that provide analytical approach to knowledge management and knowledge-based engineering. These tools require a highly integrated approach that involves, for example, predefined geometrical parametric 3D models, such as CAD templates. But this approach cannot be deployed in all engineering sites. We propose to complete this KCM approach introducing a semantic network approach, coupling with Feature Identity Card (FIC). FIC contains a set of metadata and information existing in the Product Data Management (PDM), connected with information extracted from 3D CAD (Computer Aided Design) models. It allows contextualizing information and ensures semantic connections, in order to manipulate the right parameters with mathematical algorithms. Those algorithms will search candidate relationships between design parameters extracted from CAD models. Our suggested approach aims at extracting knowledge in cases where design never came out of Knowledge Based Engineering (KBE) applications. In those situations, it seems important to complete classical knowledge management approach, and to find out the implicit knowledge embedded in 3D CAD models. This is achieved through a global approach, focusing on the product’s 3D definitions. We suggest introducing the latter approach by a suite of digital KEA tools (interfaced with KCM tools). Extracting knowledge from projects information stored in the Product Data Management does this. More precisely, the methodology is based on a commercial 3D similarity search tools for CAD models and on mathematical algorithms that search relationships between extracted design parameters. The goal is to submit new rules to the process and design experts. Implementing this methodology, a deeper knowledge of the product and its associated process can be acquired. This ensures a more productive and efficient design process.


2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


Author(s):  
Anatoli A. Borissov ◽  
Alexander A. Borissov ◽  
Kenneth K. Kramer

Each year, the users in the U.S. alone spend over $100 billion on various type of engines to produce power — electrical, mechanical, and thermal. Despite technological advances, most all of these power generation systems have only been fine tuned: the engine efficiencies may have been improved slightly, but the underlying thermodynamic principles have not been modified to effect a drastic improvement. The result is that most engines in service today suffer from two major problems: low fuel efficiency and emission of high levels of polluting gases in the exhaust gases. The current state of propulsion engines or distributed generation technologies using heat engines shows an average efficiency of between 20% and 40%. These low efficiencies in a high–cost energy market indicate a great need for more efficient technologies. This paper describes a new method of achieving a very high efficiency, namely optimizing every stage of the thermodynamic process-Brayton cycle. Two modified processes, such as isothermal compression and recuperation, add about 35% efficiency to the conventional Brayton cycle, making 60% efficiency for modified Brayton cycle. By utilizing a positive displacement compressor and expander with a novel vortex combustion chamber and a vortex recuperator, high levels of efficiency with low emissions and noise are possible. The prototype engine with low RPM and high torque has been built which use continuous combustion of different fuels under a constant pressure. First results of the engine’s components testing are presented.


Author(s):  
Jerzy Pokojski ◽  
Karol Szustakiewicz ◽  
Łukasz Woźnicki ◽  
Konrad Oleksiński ◽  
Jarosław Pruszyński

2009 ◽  
Author(s):  
Jinfeng Chen ◽  
◽  
Hezhen Yang ◽  
Ruhong Jiang ◽  
Deyu Wang ◽  
...  

2017 ◽  
Vol 107 (09) ◽  
pp. 590-593
Author(s):  
T. Schneider ◽  
J. Wortmann ◽  
B. Eilert ◽  
M. Stonis ◽  
L. Prof. Overmeyer

Das Erfassen von Drehmomenten durch Sensoren sowie das Erzeugen von Drehmomenten stellen eine wichtige Basis für viele Industriezweige dar. Im Rahmen eines Forschungsprojektes wurde ein optisches, berührungsloses Messverfahren zur absoluten Drehwinkel- und Drehmomentmessung entwickelt. Zum Vergleich mit dem aktuellen Stand der Technik wurde ein Versuchsstand aufgebaut sowie ein Referenzdrehmomentsensor eingesetzt. Die Ergebnisse dieser Validierung werden in diesem Fachaufsatz vorgestellt.   The measurement of torque via sensors as well as the generation of torque are the basis of many industrial sectors. Within a research project an optical and non-contact measurement method to detect the absolute rotation angle and torque was developed. For comparison with the current state of the art torque sensors a test stand was built and compared to a reference torque sensor. The results of this validation are presented in the present paper.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Sign in / Sign up

Export Citation Format

Share Document