scholarly journals Heat shock protein (HSP) release mechanism under heat stress pressure in Goats: a review

2022 ◽  
Vol 335 ◽  
pp. 00046
Author(s):  
Rafika Febriani Putri ◽  
Tri Eko Susilorini ◽  
Nashi Widodo ◽  
Kuswati Kuswati ◽  
Suyadi Suyadi

Among the various climate variables, heat stress has been reported to be the most detrimental factor to the economy of the livestock industry. Heat stress is one of the most stressful events in the life of livestock with harmful consequences for animal health, productivity and product quality. Heat shock proteins (HSPs), also known as molecular chaperons, are prominent stress markers. Heat shock proteins consist of highly conserved protein expressed at the time of stress, and play an important role in adaptation to the environmental stress. This review discusses the scientific evidence regarding the effects of heat stress and role of HSP during heat stress on Goats.

2017 ◽  
Vol 52 (12) ◽  
pp. 1315-1319 ◽  
Author(s):  
Avinash Gupta ◽  
Nishant Ranjan Chauhan ◽  
Daipayan Chowdhury ◽  
Ajeet Singh ◽  
Ramesh Chand Meena ◽  
...  

Author(s):  
Palakolanu Sudhakar Reddy ◽  
Thammineni Chakradhar ◽  
Ramesha A. Reddy ◽  
Rahul B. Nitnavare ◽  
Srikrishna Mahanty ◽  
...  

2020 ◽  
Vol 21 (8) ◽  
pp. 751-760 ◽  
Author(s):  
Qiang Shan ◽  
Fengtao Ma ◽  
Jingya Wei ◽  
Hongyang Li ◽  
Hui Ma ◽  
...  

Heat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tarique Hussain ◽  
Jing Wang ◽  
Ghulam Murtaza ◽  
Elsayed Metwally ◽  
Huansheng Yang ◽  
...  

Gut microbiota is the natural residents of the intestinal ecosystem which display multiple functions that provide beneficial effects on host physiology. Disturbances in gut microbiota in weaning stress are regulated by the immune system and oxidative stress-related protein pathways. Weaning stress also alters gut microbiota response, limits digestibility, and influences animal productive performance through the production of inflammatory molecules. Heat shock proteins are the molecular chaperones that perform array functions from physiological to pathological point of view and remodeling cellular stress response. As it is involved in the defense mechanism, polyphenols ensure cellular tolerance against enormous stimuli. Polyphenols are nature-blessed compounds that show their existence in plenty of amounts. Due to their wider availability and popularity, they can exert strong immunomodulatory, antioxidative, and anti-inflammatory activities. Their promising health-promoting effects have been demonstrated in different cellular and animal studies. Dietary interventions with polyphenols may alter the gut microbiome response and attenuate the weaning stress related to inflammation. Further, polyphenols elicit health-favored effects through ameliorating inflammatory processes to improve digestibility and thereby exert a protective effect on animal production. Here, in this article, we will expand the role of dietary polyphenol intervention strategies in weaning stress which perturbs gut microbiota function and also paid emphasis to heat shock proteins in gut health. This review article gives new direction to the feed industry to formulate diet containing polyphenols which would have a significant impact on animal health.


Sign in / Sign up

Export Citation Format

Share Document