scholarly journals Application of the erosion algorithm in modeling of structures behavior under impulse loads

2019 ◽  
Vol 221 ◽  
pp. 01003
Author(s):  
Pavel Radchenko ◽  
Stanislav Batuev ◽  
Andrey Radchenko

The paper presents results of applying approach to simulation of contact surfaces fracture under high velocity interaction of solid bodies. The algorithm of erosion -the algorithm of elements removing, of new surface building and of mass distribution after elements fracture at contact boundaries is consider. The results of coordinated experimental and numerical studies of fracture of materials under impact are given. Authors own finite element computer software program EFES, allowing to simulate a three-dimensional setting behavior of complex structures under dynamic loads, has been used for the calculations.

2012 ◽  
Vol 446-449 ◽  
pp. 837-840
Author(s):  
Yu Zhao ◽  
Shu Fang Yuan ◽  
Jian Wei Zhang

The underwater structure of power house is major structure under the dynamic loads of unit. The vibration problem is very common in operation. So the structures should have sufficient stiffness to resist dynamic loads of unit. This paper establishes three-dimensional finite element models with finite element analysis software—ANSYS. Dynamic characteristics of the power house and dynamic responses of structure under earthquake are analyzed. The results of the computation show that fluid-solid coupling may be ignored when studying dynamic characteristics of structures of the underground power house.


2008 ◽  
Vol 583 ◽  
pp. 257-275 ◽  
Author(s):  
Ferdinando Auricchio ◽  
Alessandro Reali

The use of shape memory alloys (SMA) in an increasing number of applications in many ¯elds of engineering, such as biomedical engineering, is leading to a growing interest toward an exhaustive modeling of their macroscopic behavior in order to construct reliable simulation tools for SMA devices. In this paper we review a robust three-dimensional model able to reproduce both pseudo-elastic and shape-memory behaviors and we report numerical studies where it is used for the simulation of SMA-based biomedical devices.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Anatoly A. Kozhenkov ◽  
Rafail S. Deitch

This paper presents the modeling procedure for a high-velocity rotor system (RS) combined with sliding bearings. The equations for motion of the RS parts were derived based on the model of a rotating elastic medium. Lubrication layers have been calculated with the use of the Reynolds equations. The discretization of the RS model has been carried out using three-dimensional contact finite element method and two-dimensional method of finite differences. The integration with respect to time is performed by an absolutely stable step-by-step method. The paper also compares and discusses computed and experimental amplitude-frequency characteristics of the self-oscillating turbocharger’s RS. The values of dynamic loads in parts, as well as reactions, clearances, and losses in bearings, computed based on the presented modeling procedure make the RS designing more accurate and reliable.


Author(s):  
Kamel Meftah ◽  
Lakhdar Sedira

Abstract The paper presents a four-node tetrahedral solid finite element SFR4 with rotational degrees of freedom (DOFs) based on the Space Fiber Rotation (SFR) concept for modeling three-dimensional solid structures. This SFR concept is based on the idea that a 3D virtual fiber, after a spatial rotation, introduces an enhancement of the strain field tensor approximation. Full numerical integration is used to evaluate the element stiffness matrix. To demonstrate the efficiency and accuracy of the developed four-node tetrahedron solid element and to compare its performance with the classical four-node tetrahedral element, extensive numerical studies are presented.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Liping Xue ◽  
G. E. O. Widera ◽  
Zhifu Sang

The purpose of this paper is to demonstrate that the burst pressure of a cylindrical shell subjected to internal pressure can be accurately predicted by using finite element method. The computer software ANSYS (Swanson Analysis System Inc., 2003, “Engineering Analysis Systems User's Manual”) is employed to perform a static, nonlinear analysis (both geometry of deformation and material behavior) using three-dimensional 20 node structural solid elements. The “Newton–Raphson method” and the “arclength method” are both employed to solve the nonlinear equations. A comparison with various empirical equations shows that the static finite element method simulation using the arclength method can be employed with sufficient accuracy to predict the burst pressure of a cylindrical shell. It is also shown that the Barlow equation is a good predictor of burst pressure of cylindrical shells.


Author(s):  
K Polgar ◽  
H S Gill ◽  
M Viceconti ◽  
D W Murray ◽  
J J O'Connor

The human femur is one of the parts of the musculo-skeletal system most frequently analysed by means of the finite element (FE) method. Most FE studies of the human femur are based on computed tomography data sets of a particular femur. Since the geometry of the chosen sample anatomy influences the computed results, direct comparison across various models is often difficult or impossible. The aim of the present work was to develop and validate a novel three-dimensional FE model of the human femur based on the muscle standardized femur (MuscleSF) geometry. In the new MuscleSF FE model, the femoral attachment of each muscle was meshed separately on the external bone surface. The model was tested under simple load configurations and the results showed good agreement with the converged solution of a former study. In the future, using the validated MuscleSF FE model for numerical studies of the human femur will provide the following benefits: (a) the numerical accuracy of the model is known; (b) muscle attachment areas are incorporated in the model, therefore physiological loading conditions can be easily defined; (c) analyses of the femur under physiological load cases will be replicable; (d) results based on different load configurations could be compared across various studies.


Author(s):  
Junjie Chen ◽  
Chaoping Zang ◽  
Biao Zhou ◽  
EP Petrov

A method for the analysis of amplitude-dependent modal damping factors is developed for the cases when the energy dissipation is caused by the micro-slip motion at friction contacts of blade root joints. The modal damping at root joints for a lone blade and for tuned bladed disc assemblies is studied. Large three-dimensional finite element models and detailed description of friction contacts by surface-to-surface friction contact elements at contact interfaces of the root joints are used for the calculations. The method allows using available finite element packages and is based on the direct calculation of the energy dissipated at root joints for prescribed levels of vibration amplitudes. The method takes into account the nonlinear dependency of the modal damping factors on the vibration level. The numerical studies of the dependency of modal damping factors on the vibration amplitudes, rotation speed, and contact interface parameters are performed for different families of modes and different nodal diameter numbers.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750065 ◽  
Author(s):  
Xuecheng Ping ◽  
Mengcheng Chen ◽  
Wei Zhu ◽  
Yihua Xiao ◽  
Weixing Wu

In order to consider corner configurations with straight corner fronts in three-dimensional (3D) solids, a super polygonal prismatic element containing a straight corner front is established by using the numerical eigensolutions of singular stress fields and the Hellinger–Reissner variational principle. Singular stresses near the corner front subject to far-field boundary conditions can be obtained by incorporating the super singular element with conventional 3D brick elements. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of 3D corner configurations and cracks. The usage of the super singular element can avoid mesh refinement near the corner front domain that is necessary for conventional and enriched finite element methods, and lead to high accuracy and fast convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated problems of stress singularity in elasticity including multiple defects.


2001 ◽  
Vol 17 (4) ◽  
pp. 189-199
Author(s):  
Chyuan-Jau Shieh ◽  
Wen-Hwa Chen

ABSTRACTThis work presents a rigorous three-dimensional finite element procedure to analyze belt transmission systems. The frictional contact behavior between the belt and the pulley, which accounts for the power loss of the system and the wear of the belt, is investigated in detail. In addition to adopting the transformation matrix to satisfy the geometric conditions on the contact surfaces, the proposed procedure also uses the modified elements with incremental Wilson displacement modes to improve the accuracy due to bending at the end zones of the contact area for the belt. To demonstrate the accuracy and feasibility of the proposed procedure, the analyses for flat and V belt drives are carried out. Excellent correlations between the calculated results and referenced theoretical/experimental solutions are found. The influences of friction coefficients on the deformation, normal and tangential contact forces on the contact surfaces are studied as well. Those will be helpful for the estimation of wear properties and operation efficiency for belt transmission systems.


Sign in / Sign up

Export Citation Format

Share Document