scholarly journals Analytical nonlocal model for shear localization in wall-bounded dense granular flow

2021 ◽  
Vol 249 ◽  
pp. 03022
Author(s):  
Keng-Lin Lee ◽  
Riccardo Artoni ◽  
Fu-Ling Yang ◽  
Patrick Richard

This work employs a Landau-Ginzburg-type nonlocal rheology model to account for shear localization in a wall-bounded dense granular flow. The configuration is a 3D shear cell in which the bottom bumpy wall moves at a constant speed, while a load pressure is applied at the top bumpy wall, with flat but frictional lateral walls. At a fixed pressure, shear zones transit from the top to the bottom when increasing lateral wall friction coefficient. With a quasi-2D model simplification, asymptotic solutions for fluidization order parameters near the top and bottom boundaries are sought separately. Both solutions are the Airy function in terms of a depth coordinate scaled by a characteristic length which measures the width of the corresponding shear zone. The theoretical predictions for the shear zone widths against lateral wall friction coefficient and load pressure agree well with data extracted from particle-based simulation for the flow.

Author(s):  
Alessandro Tasora ◽  
Mihai Anitescu

Aiming at the simulation of dense granular flows, we propose and test a numerical method based on successive convex complementarity problems. This approach originates from a multibody description of the granular flow: all the particles are simulated as rigid bodies with arbitrary shapes and frictional contacts. Unlike the discrete element method (DEM), the proposed approach does not require small integration time steps typical of stiff particle interaction; this fact, together with the development of optimized algorithms that can run also on parallel computing architectures, allows an efficient application of the proposed methodology to granular flows with a large number of particles. We present an application to the analysis of the refueling flow in pebble-bed nuclear reactors. Extensive validation of our method against both DEM and physical experiments results indicates that essential collective characteristics of dense granular flow are accurately predicted.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Quanlin Hou ◽  
Hongyuan Zhang ◽  
Qing Liu ◽  
Jun Li ◽  
Yudong Wu

A previous study of the Dabie area has been supposed that a strong extensional event happened between the Yangtze and North China blocks. The entire extensional system is divided into the Northern Dabie metamorphic complex belt and the south extensional tectonic System according to geological and geochemical characteristics in our study. The Xiaotian-Mozitan shear zone in the north boundary of the north system is a thrust detachment, showing upper block sliding to the NNE, with a displacement of more than 56 km. However, in the south system, the shearing direction along the Shuihou-Wuhe and Taihu-Mamiao shear zones is tending towards SSE, whereas that along the Susong-Qingshuihe shear zone tending towards SW, with a displacement of about 12 km. Flinn index results of both the north and south extensional systems indicate that there is a shear mechanism transition from pure to simple, implying that the extensional event in the south tectonic system could be related to a magma intrusion in the Northern Dabie metamorphic complex belt. Two 40Ar-39Ar ages of mylonite rocks in the above mentioned shear zones yielded, separately, ~190 Ma and ~124 Ma, referring to a cooling age of ultrahigh-pressure rocks and an extensional era later.


2021 ◽  
Author(s):  
Pritam Ghosh ◽  
Kathakali Bhattacharyya

<p>We examine how the deformation profile and kinematic evolutionary paths of two major shear zones with prolonged deformation history and large translations differ with varying structural positions along its transport direction in an orogenic wedge. We conduct this analysis on multiple exposures of the internal thrusts from the Sikkim Himalayan fold thrust belt, the Pelling-Munsiari thrust (PT), the roof thrust of the Lesser Himalayan duplex (LHD), and the overlying Main Central thrust (MCT). These two thrusts are regionally folded due to growth of the LHD and are exposed at different structural positions. The hinterlandmost exposures of the MCT and PT zones lie in the trailing parts of the duplex, while the foreland-most exposures of the same studied shear zones lie in the leading part of the duplex, and thus have recorded a greater connectivity with the duplex. The thicknesses of the shear zones progressively decrease toward the leading edge indicating variation in deformation conditions. Thickness-displacement plot reveals strain-softening from all the five studied MCT and the PT mylonite zones. However, the strain-softening mechanisms varied along its transport direction with the hinterland exposures recording dominantly dislocation-creep, while dissolution-creep and reaction-softening are dominant in the forelandmost exposures. Based on overburden estimation, the loss of overburden on the MCT and the PT zones is more in the leading edge (~26km and ~15km, respectively) than in the trailing edge (~10km and ~17km, respectively), during progressive deformation. Based on recalibrated recrystallized quartz grain thermometer (Law, 2014), the estimated deformation temperatures in the trailing edge are higher (~450-650°C) than in the leading edge (350-550°C) of the shear zones. This variation in the deformation conditions is also reflected in the shallow-crustal deformation structures with higher fracture intensity and lower spacing in the leading edge exposures of the shear zones as compared to the trailing edge exposures.</p><p>The proportion of mylonitic domains and micaceous minerals within the exposed shear zones increase and grain-size of the constituent minerals decreases progressively along the transport direction. This is also consistent with progressive increase in mean R<sub>s</sub>-values toward leading edge exposures of the same shear zones. Additionally, the α-value (stretch ratio) gradually increases toward the foreland-most exposures along with increasing angular shear strain. Vorticity estimates from multiple incremental strain markers indicate that the MCT and PT zones generally record a decelerating strain path. Therefore, the results from this study are counterintuitive to the general observation of a direct relationship between higher Rs-value and higher pure-shear component. We explain this observation in the context of the larger kinematics of the orogen, where the leading edge exposures have passed through the duplex structure, recording the greatest connectivity and most complete deformation history, resulting in the weakest shear zone that is also reflected in the deformation profiles and strain attributes. This study demonstrates that the same shear zone records varying deformation profile, strain and kinematic evolutionary paths due to varying deformation conditions and varying connectivity to the underlying footwall structures during progressive deformation of an orogenic wedge.</p>


2018 ◽  
Vol 722 ◽  
pp. 595-600 ◽  
Author(s):  
M. Cihat Alçiçek ◽  
Lars W. van den Hoek Ostende ◽  
Gerçek Saraç ◽  
Alexey S. Tesakov ◽  
Alison M. Murray ◽  
...  

2001 ◽  
Vol 15 (06n07) ◽  
pp. 980-987
Author(s):  
K. SHIMADA ◽  
S. KAMIYAMA

An experimental investigation is conducted to clarify the hydrodynamic characteristics of ERF with elastic particles of smectite in a two-dimensional parallel duct of various widths. Experimental data on pressure difference to a volumetric flow rate in a supplying D.C. electric field are measured. These data are arranged to obtain the apparent viscosit by using the integral method of rheology. From the data of apparent viscosity, the wall friction coefficient is obtained. The increment of the apparent viscosity caused by the applying electric field is a function of shear rate as well as the electric field strength and the width of the duct. However, the wall friction coefficient is not a function of elecric field strength and the width of the parallel duct, but only of shear rate. The yield stress is a function of the width of the parallel duct as well as of electric field strength. The ratio of Non-Newtonian viscosity in the apparent viscosity is varied by the intensity of the shear rate.


2012 ◽  
Vol 220 ◽  
pp. 7-14 ◽  
Author(s):  
V. Vidyapati ◽  
M. Kheiripour Langroudi ◽  
J. Sun ◽  
S. Sundaresan ◽  
G.I. Tardos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document