GRAPHICAL DISPLAY OF THREE-DIMENSIONAL (3-D) INTENSITY DATA FROM SINGLE-CRYSTAL REFLECTIONS

1986 ◽  
Vol 47 (C5) ◽  
pp. C5-183-C5-187
Author(s):  
M. U. PILOTTI ◽  
G. J. McINTYRE
Author(s):  
Joseph R. Smyth

AbstractTechniques allowing single-crystal investigations on the precession camera up to the melting point of platinum have been developed. The crystal structure of protoenstatite has been refined from three-dimensional intensity data obtained at 1100°C using a crystal of enstatite from the Norton County, Kansas meteorite. The space group is


2018 ◽  
Vol 74 (11) ◽  
pp. 1041-1052 ◽  
Author(s):  
Naomine Yano ◽  
Taro Yamada ◽  
Takaaki Hosoya ◽  
Takashi Ohhara ◽  
Ichiro Tanaka ◽  
...  

The STARGazer data-processing software is used for neutron time-of-flight (TOF) single-crystal diffraction data collected using the IBARAKI Biological Crystal Diffractometer (iBIX) at the Japan Proton Accelerator Research Complex (J-PARC). This software creates hkl intensity data from three-dimensional (x, y, TOF) diffraction data. STARGazer is composed of a data-processing component and a data-visualization component. The former is used to calculate the hkl intensity data. The latter displays the three-dimensional diffraction data with searched or predicted peak positions and is used to determine and confirm integration regions. STARGazer has been developed to make it easier to use and to obtain more accurate intensity data. For example, a profile-fitting method for peak integration was developed and the data statistics were improved. STARGazer and its manual, containing installation and data-processing components, have been prepared and provided to iBIX users. This article describes the status of the STARGazer data-processing software and its data-processing algorithms.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


2015 ◽  
Vol 71 (4) ◽  
pp. 330-337 ◽  
Author(s):  
Sabina Kovač ◽  
Ljiljana Karanović ◽  
Tamara Đorđević

Two isostructural diarsenates, SrZnAs2O7(strontium zinc diarsenate), (I), and BaCuAs2O7[barium copper(II) diarsenate], (II), have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. The three-dimensional open-framework crystal structure consists of corner-sharingM2O5(M2 = Zn or Cu) square pyramids and diarsenate (As2O7) groups. Each As2O7group shares its five corners with five differentM2O5square pyramids. The resulting framework delimits two types of tunnels aligned parallel to the [010] and [100] directions where the large divalent nine-coordinatedM1 (M1 = Sr or Ba) cations are located. The geometrical characteristics of theM1O9,M2O5and As2O7groups of known isostructural diarsenates, adopting the general formulaM1IIM2IIAs2O7(M1II= Sr, Ba, Pb;M2II= Mg, Co, Cu, Zn) and crystallizing in the space groupP21/n, are presented and discussed.


2011 ◽  
Vol 284-286 ◽  
pp. 1584-1587
Author(s):  
Zhen Xue Shi ◽  
Jia Rong Li ◽  
Shi Zhong Liu ◽  
Jin Qian Zhao

The specimens of low angle boundaries were machined from the second generation single crystal superalloy DD6 blades. The microstructures of low angle boundaries (LAB) were investigated from three scales of dendrite, γ′ phase and atom with optical microscopy (OM), scanning electron microscope (SEM), transition electron microscope (TEM) and high resolution transmission electrion microscopy (HREM). The results showed that on the dendrite scale LAB is interdendrite district formed by three dimensional curved face between the adjacent dendrites. On the γ′ phase scale LAB is composed by a thin layer γ phase and its bilateral imperfect cube γ′ phase. On the atom scale LAB is made up of dislocations within several atom thickness.


2008 ◽  
Vol 47 (7) ◽  
pp. 5576-5580 ◽  
Author(s):  
Passapong Wutimakun ◽  
Taichiro Mori ◽  
Hisashi Miyazaki ◽  
Yoichi Okamoto ◽  
Jun Morimoto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document