A minimum entropy principle in the compressible multicomponent Euler equations
2020 ◽
Vol 54
(2)
◽
pp. 373-389
◽
Keyword(s):
In this work, the space of admissible entropy functions for the compressible multicomponent Euler equations is explored, following up on Harten (J. Comput. Phys. 49 (1983) 151–164). This effort allows us to prove a minimum entropy principle on entropy solutions, whether smooth or discrete, in the same way it was originally demonstrated for the compressible Euler equations by Tadmor (Appl. Numer. Math. 49 (1986) 211–219).
2008 ◽
Vol 21
(4)
◽
pp. 410-415
◽
2003 ◽
Vol 191
(2)
◽
pp. 277-322
◽
2016 ◽
Vol 56
(4)
◽
pp. 1479-1496
◽
2017 ◽
Vol 37
◽
pp. 217-238
◽
Keyword(s):
2017 ◽
Vol 49
(4)
◽
pp. 2591-2614
◽
Keyword(s):
2009 ◽
Vol 62
(11)
◽
pp. 1551-1594
◽
2021 ◽
Vol 495
(2)
◽
pp. 124761
1998 ◽
Vol 146
(1)
◽
pp. 203-225
◽
Keyword(s):