scholarly journals Lithium-Ion Battery Management System: A Lifecycle Evaluation Model for the Use in the Development of Electric Vehicles

2018 ◽  
Vol 144 ◽  
pp. 04020 ◽  
Author(s):  
Ayush Sisodia ◽  
Jonathan Monteiro

The use of Lithium-ion batteries in the automobile sector has expanded drastically in the recent years. The foreseen increment of lithium to power electric and hybrid electric vehicles has provoked specialists to analyze the long term credibility of lithium as a transportation asset. To give a better picture of future accessibility, this paper exhibits a life cycle model for the key procedures and materials associated with the electric vehicle lithium-ion battery life cycle, on a worldwide scale. This model tracks the flow of lithium and energy sources from extraction, to generation, to on road utilization, and the role of reusing and scrapping. This life cycle evaluation model is the initial phase in building up an examination model for the lithium ion battery production that would enable the policymakers to survey the future importance of lithium battery recycling, and when in time setting up a reusing foundation be made necessary.

2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2019 ◽  
Vol 68 (5) ◽  
pp. 4110-4121 ◽  
Author(s):  
Rui Xiong ◽  
Yongzhi Zhang ◽  
Ju Wang ◽  
Hongwen He ◽  
Simin Peng ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 471-479
Author(s):  
Thiruvonasundari Duraisamy ◽  
Kaliyaperumal Deepa

Vehicle manufacturers positioned electric vehicles (EVs) and hybrid electric vehicles (HEVs) as reliable, safe and environmental friendly alternative to traditional fuel based vehicles. Charging EVs using renewable energy resources reduce greenhouse emissions. The Lithium-ion (Li-ion) batteries used in EVs are susceptible to failure due to voltage imbalance when connected to form a pack. Hence, it requires a proper balancing system categorised into passive and active systems based on the working principle. It is the prerogative of a battery management system (BMS) designer to choose an appropriate system depending on the application. This study compares and evaluates passive balancing system against widely used inductor based active balancing system in order to select an appropriate balancing scheme addressing battery efficiency and balancing speed for E-vehicle segment (E-bike, E-car and E-truck). The balancing systems are implemented using “top-balancing” algorithm which balance the cells voltages near the end of charge for better accuracy and effective balancing. The most important characteristics of the balancing systems such as degree of imbalance, power loss and temperature variation are determined by their influence on battery performance and cost. To enhance the battery life, Matlab-Simscape simulation-based analysis is performed in order to fine tune the cell balancing system for the optimal usage of the battery pack. For the simulation requirements, the battery model parameters are obtained using least-square fitting algorithm on the data obtained through electro chemical impedance spectroscopy (EIS) test. The achieved balancing time of the passive and active cell balancer for fourteen cells were 48 and 20 min for the voltage deviation of 30 mV. Also, the recorded balancing time was 215 and 42 min for the voltage deviation of 200 mV.


2021 ◽  
Vol 10 (3) ◽  
pp. 471-479
Author(s):  
Thiruvonasundari Duraisamy ◽  
Kaliyaperumal Deepa

Vehicle manufacturers positioned electric vehicles (EVs) and hybrid electric vehicles (HEVs) as reliable, safe and environmental friendly alternative to traditional fuel based vehicles. Charging EVs using renewable energy resources reduce greenhouse emissions. The Lithium-ion (Li-ion) batteries used in EVs are susceptible to failure due to voltage imbalance when connected to form a pack. Hence, it requires a proper balancing system categorised into passive and active systems based on the working principle. It is the prerogative of a battery management system (BMS) designer to choose an appropriate system depending on the application. This study compares and evaluates passive balancing system against widely used inductor based active balancing system in order to select an appropriate balancing scheme addressing battery efficiency and balancing speed for E-vehicle segment (E-bike, E-car and E-truck). The balancing systems are implemented using “top-balancing” algorithm which balance the cells voltages near the end of charge for better accuracy and effective balancing. The most important characteristics of the balancing systems such as degree of imbalance, power loss and temperature variation are determined by their influence on battery performance and cost. To enhance the battery life, Matlab-Simscape simulation-based analysis is performed in order to fine tune the cell balancing system for the optimal usage of the battery pack. For the simulation requirements, the battery model parameters are obtained using least-square fitting algorithm on the data obtained through electro chemical impedance spectroscopy (EIS) test. The achieved balancing time of the passive and active cell balancer for fourteen cells were 48 and 20 min for the voltage deviation of 30 mV. Also, the recorded balancing time was 215 and 42 min for the voltage deviation of 200 mV.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1588
Author(s):  
Khaled Laadjal ◽  
Antonio J. Marques Cardoso

Lithium-ion batteries are the most used these days for charging electric vehicles (EV). It is important to study the aging of batteries because the deterioration of their characteristics largely determines the cost, efficiency, and environmental impact of electric vehicles, especially full-electric ones. The estimation of batteries’ state-condition is also very important for improving energy efficiency, lengthening the life cycle, minimizing costs and ensuring safe implementation of batteries in electric vehicles. However, batteries with large temporal variables and non-linear characteristics are often affected by random factors affecting the equivalent internal resistance (EIR), battery state of charge (SoC), and state of health (SoH) in EV applications. The estimation of batteries’ parameters is a complex process, due to its dependence on various factors such as batteries age and ambient temperature, among others. A good estimate of SoC and internal resistance leads to long battery life and disaster prevention in the event of a battery failure. The classification of estimation methodologies for internal parameters and the charging status of batteries will be very helpful in choosing the appropriate method for the development of a reliable and secure battery management system (BMS) and an energy management strategy for electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document