scholarly journals Synthesis of N-vinylpyrrolidone/Acrylic acid nanoparticles for drug delivery: Method optimization

2018 ◽  
Vol 192 ◽  
pp. 01020 ◽  
Author(s):  
Chaiyakarn Pornpitchanarong ◽  
Theerasak Rojanarata ◽  
Praneet Opanasopit ◽  
Prasopchai Patrojanasophon ◽  
Tanasait Ngawhirunpat

There are various approaches to deliver therapeutic agents to the preferred target. Polymeric nanoparticles were found to have pleasing suitability as a drug carrier. The goal of this research was to optimize the synthesis method to obtain the desirable %yield and particle properties of the new biocompatible polymer-based nanoparticles. The non-toxic polymer, N-vinyl pyrrolidone (NVP) and a widely used hydrophilic biocompatible acrylic acid (AA) monomer were used to form the drug nanocarriers. The synthesis method was optimized by changing the types of initiator (KPS or V50) and the monomers molar ratio (NVP:AA). It was found that by varying both the monomer molar ratio and the type of reaction initiator, did not have significant effect on the physicochemical characteristics of the nanocarriers. The FTIR spectra of all products exhibited the peaks of carboxylic acid, carbonyl, and tertiary amine functional group vibration. The particle size of the nanocarriers was in the range of 173.6 ± 18.4 to 201.4 ± 17.1 nm with negative surface charge. However, the yield obtained increased as the initiator was altered from KPS to V50, and when the acrylic acid molar ratio was increased from 1:1 to 1:3. In conclusion, changing the initiator and monomer molar ratio may affect the physicochemical properties of the nanocarriers and the %yield of the nanocarrier product. Further investigations are essential to obtain the favorable drug nanocarriers for drug delivery.


2015 ◽  
Vol 2015 ◽  
pp. 1-27 ◽  
Author(s):  
Karolina Werengowska-Ciećwierz ◽  
Marek Wiśniewski ◽  
Artur P. Terzyk ◽  
Sylwester Furmaniak

Nanomedicine is, generally, the application of nanotechnology to medicine. The term nanomedicine includes monitoring, construction of novel drug delivery systems, and any possible future applications of nanotechnology and nanovaccinology. In this review, the most important ligand-nanocarrier and drug-nanocarrier bioconjugations are described. The detailed characterizations of covalently formed bonds between targeted ligand and nanocarrier, including amide, thioether, disulfide, acetyl-hydrazone and polycyclic groups, are described. Also, the coupling of small elements and heteroatoms in the form of R-X-R the “click chemistry” groups is shown. Physical adsorption and chemical bonding of drug to nanocarrier surface involving drug on the internal or external surfaces of nanocarriers are described throughout possibility of the formation of the above-mentioned functionalities. Moreover, the most popular nanostructures (liposomes, micelles, polymeric nanoparticles, dendrimers, carbon nanotubes, and nanohorns) are characterized as nanocarriers. Building of modern drug carrier is a new method which could be effectively applied in targeted anticancer therapy.



Author(s):  
Ashish B. Budhrani ◽  
Shubhra R. Rai ◽  
Aarati S. Panchbhai ◽  
Rajshri B. Dongarwar

Nano-emulsion dosage forms have nano-sized droplets of disperse phase and are kinetically stable dosage form. Nano-emulsions are included under the category of new drug delivery system containing emulsified water in oil/oil in water system having mean globule size ranges from 10 nm to 1000 nm.  In the field of pharmacy, nano-emulsions play an essential role in the delivery of medication through various drug administration routes like parenteral, topical and oral route. Nano-emulsions are nano-sized emulsions which are used under high investigation as a drug carrier for enhancing the delivery of therapeutic agents. Nano-emulsions have enhanced functional properties as compared to standard emulsions. They are nowadays growing work for utilizing nano-sized particles in the research of pharmaceuticals, cosmetics and food products.  Mainly, intrigue has been creating simultaneously with higher emulsification techniques and mechanisms of stabilization. Nano-emulsions are formulated by both methods like high energy emulsification or low energy emulsification methods. Rapid energy emulsification technique includes high shear mixing, high-pressure homogenization or ultrasonication. In contrast, low energy emulsification technique includes the merit of the physicochemical characteristics of the system, which exploits phase transitions to obtained nano-emulsion. This review article is an effort to summarize comparative aspects like introduction, types, advantages, disadvantages, components, factors affecting, methods of preparations, methods of analysis of nano-emulsion and applications of nano-emulsion.



2013 ◽  
Vol 2 (3) ◽  
pp. 241-257 ◽  
Author(s):  
Jingyan Li ◽  
Cristina Sabliov

AbstractThe blood-brain barrier (BBB), which protects the central nervous system (CNS) from unnecessary substances, is a challenging obstacle in the treatment of CNS disease. Many therapeutic agents such as hydrophilic and macromolecular drugs cannot overcome the BBB. One promising solution is the employment of polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs as drug carrier. Over the past few years, significant breakthroughs have been made in developing suitable PLGA and poly (lactic acid) (PLA) NPs for drug delivery across the BBB. Recent advances on PLGA/PLA NPs enhanced neural delivery of drugs are reviewed in this paper. Both in vitro and in vivo studies are included. In these papers, enhanced cellular uptake and therapeutic efficacy of drugs delivered with modified PLGA/PLA NPs compared with free drugs or drugs delivered by unmodified PLGA/PLA NPs were shown; no significant in vitro cytotoxicity was observed for PLGA/PLA NPs. Surface modification of PLGA/PLA NPs by coating with surfactants/polymers or covalently conjugating the NPs with targeting ligands has been confirmed to enhance drug delivery across the BBB. Most unmodified PLGA NPs showed low brain uptake (<1%), which indirectly confirms the safety of PLGA/PLA NPs used for other purposes than treating CNS diseases.



2006 ◽  
Vol 6 (9) ◽  
pp. 2821-2828 ◽  
Author(s):  
Xudong Yuan ◽  
Ling Li ◽  
Appu Rathinavelu ◽  
Jinsong Hao ◽  
Madhusudhanan Narasimhan ◽  
...  

RNA interference (RNAi) is an emerging technology in which the introduction of double-stranded RNA (dsRNA) into a diverse range of organisms and cell types causes degradation of the complementary mRNA. It offers a broad spectrum of applications in both biological and medical research. Small interference RNA (siRNA) was recently explored for its therapeutical potential. However, the drug delivery of siRNA oligos is very novel and is in great need of future research. To this end, a biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle drug carrier system was prepared to load siRNA oligos with desired physicochemical properties. The nanoparticles were characterized by scanning electron microscopy and laser diffraction particle sizer. The delivery of siRNA into the targeted 293T cells was observed using fluorescent-labeled double-stranded Cy3-oligos. The model siRNA oligos, si-GFP-RNA, were also successfully loaded into PLGA nanoparticles and delivered in 293T cells. The gene silencing effect and the inhibition of GFP expression were investigated using fluorescent microscopy. Both positive and negative controls were used to compare with the new siRNA nanoparticle delivery system. It was found that nanoparticles offered both effective delivery of siRNA and prominent GFP gene silencing effect. Compared to conventional carrier systems, the new biodegradable polymeric nanoparticle system may also offer improved formulation stability, which is practically beneficial and may be used in the future clinical studies of siRNA therapeutics.



2017 ◽  
Vol 33 (1) ◽  
pp. 95-115 ◽  
Author(s):  
Amany I Raafat ◽  
Ghada A Mahmoud ◽  
Amr El-Hag Ali ◽  
Nagwa A Badawy ◽  
Mai F Elshahawy

A mucoadhesive drug delivery system can improve the effectiveness of a drug, allowing targeting and localization at a specific site. According to this assumption, γ-irradiation as eco-friendly technique was employed to synthesize (acrylic acid/polyethylene glycol) copolymer hydrogel of different compositions. Silver nanoparticles were prepared within (acrylic acid/polyethylene glycol) hydrogel network by means of in situ reduction of silver nitrate using sodium borohydride as a reducing agent. Swelling characteristics in distilled water and simulated saliva solution were studied as a function of copolymer composition and preparation irradiation dose. (Acrylic acid/polyethylene glycol) hydrogels and their developed Agº nanocomposites have been characterized using scanning electron microscope, thermogravimetric analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Mucoadhesive strength as well as self-disinfection efficiency expressed as antibacterial activity against different bacterial strains was evaluated. Propranolol HCl as model drug was used to evaluate the potential efficiency of the obtained (acrylic acid/polyethylene glycol)-Agº nanocomposites as mucoadhesive drug carrier. The obtained results showed that the (acrylic acid/polyethylene glycol)-Agº nanocomposites show a promising self-disinfection property, and the propranolol HCl–loaded composites were able to deliver the loaded drug in a sustainable manner that lasts for about 600 min.



Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4416
Author(s):  
Christian J. Wijaya ◽  
Suryadi Ismadji ◽  
Hakun W. Aparamarta ◽  
Setiyo Gunawan

Due to its excellent characteristics, zeolitic imidazole framework-L (ZIF-L) is widely used in various applications, such as drug delivery, wastewater treatments and energy storage. In the synthesis of ZIF-L, the molar ratio of ligand to metal, the reaction time and the temperature are essential parameters to produce excellent ZIF-L. In this work, ZIF-L was synthesized using a facile and green synthesis method. It was statistically investigated and optimized to obtain the best operating conditions. The optimization was carried out toward the amount of adsorbed crystal violet (CV) dye (q) as the response in the statistics. The optimal ZIF-L was obtained using a molar ratio of ligand to metal of 8.2220 for 97 min at 29 °C, where the q value of the CV adsorption onto this optimal ZIF-L reached 823.02 mg/g. The obtained ZIF-L was characterized using SEM, XRD, FTIR and TGA analyses to ensure its excellent characteristics.



2019 ◽  
Vol 9 (1) ◽  
pp. 61-75 ◽  
Author(s):  
A. Dhiman ◽  
D. Bhalla

Background: Nanotechnology has gained a great deal of public interest due to the needs and applications of nanomaterials in many areas of human endeavours such as industry, agriculture, business, medicine and public health amongst many others. Polymeric nanoparticles from biodegradable and biocompatible polymers are good candidates for drug carrier to deliver the drugs because they are expected to be adsorbed in an intact form in the gastrointestinal tract after oral administration. Objective: The objective of the study was to investigate the influence of some precarious variables like, concentration of chitosan, concentration of sodium tripolyphosphate (STPP) and stirring time on physicochemical characteristics of lycopene loaded chitosan nanoparticles. Method: Eight batches of lycopene loaded chitosan nanoparticles were prepared using various concentrations of chitosan (100-200 mg), STPP (50-100 mg) by varying stirring speed in the range of 10-20 minutes using ionic gelation method. The optimized nanoparticulate formulation was characterized for various parameters like morphology study, particle size and size distribution studies, differential scanning calorimetry, entrapment efficiency and in-vitro drug release studies. Results: Lycopene loaded chitosan nanoparticles containing 150 mg of chitosan, 75 mg of STPP, 20 mg of drug lycopene and with 15 min of stirring time showed entrapment efficiency of 89.4%. The percent release of lycopene loaded chitosan nanoparticles at the end of 6 h was found to be 83.5%, however, percent release of pure lycopene at the end of 6 h was observed as 79.6%. Conclusion: Lycopene loaded chitosan nanoparticles may show a great promise for the development of drug delivery system by enhancing the cellular accumulation of lycopene with chitosan.



RSC Advances ◽  
2016 ◽  
Vol 6 (42) ◽  
pp. 35550-35558 ◽  
Author(s):  
Xiaohong Wang ◽  
Zilong Zhou ◽  
Xiaowei Guo ◽  
Qiang He ◽  
Chen Hao ◽  
...  

Ultrasonic-assisted synthesis of sodium lignosulfonate-grafted hydrogel and the sustained release performance of the drug.



Sign in / Sign up

Export Citation Format

Share Document