scholarly journals Cruciform specimens for the determination of crack growth behaviour in biaxial stress fields: calculation of K-factors

2019 ◽  
Vol 300 ◽  
pp. 11008
Author(s):  
Carl H. Wolf ◽  
Andreas Burgold ◽  
Sebastian Henkel ◽  
Meinhard Kuna ◽  
Horst Biermann

The aim of this study is to propose a simplified calculation of the Mode I stress intensity factor K for the cruciform specimen design proposed by Brown and Miller. To calculate K, both cracks have to grow with a similar crack growth rate and the crack paths of the two single cracks with the length a should also be similar. The calculations are carried out on an aluminum specimen and a steel specimen. For all load cases and materials, the stresses resulting from the forces are first considered. It was found that the elastic constants E and ν have only a small influence of less than 3 %. In addition, the coupling between the forces of the load axes, which should be minimized by the slotted arms, is considered. Furthermore K-factors are calculated by FE for different crack lengths. These K-values together with the transmission factor allow to find a K-factor formula for cruciform specimens, which is based on the prescribed forces. Finally, the results of the FE calculation of the exact straight crack paths were compared to experimentally determined crack paths.

2020 ◽  
Vol 107 ◽  
pp. 102521
Author(s):  
Carl H. Wolf ◽  
Andreas Burgold ◽  
Sebastian Henkel ◽  
Meinhard Kuna ◽  
Horst Biermann

2007 ◽  
Vol 348-349 ◽  
pp. 129-132 ◽  
Author(s):  
Roberto G. Citarella ◽  
Friedrich G. Buchholz

In this paper detailed results of computational 3D fatigue crack growth simulations will be presented. The simulations for the crack path assessment are based on the DBEM code BEASY, and the FEM code ADAPCRACK 3D. The specimen under investigation is a SEN-specimen subject to pure anti-plane or out-of-plane four-point shear loading. The computational 3D fracture analyses deliver variable mixed mode II and III conditions along the crack front. Special interest is taken in this mode coupling effect to be found in stress intensity factor (SIF) results along the crack front. Further interest is taken in a 3D effect which is effective in particular at and adjacent to the two crack front corner points, that is where the crack front intersects the two free side surfaces of the specimen. Exactly at these crack front corner points fatigue crack growth initiates in the experimental laboratory test specimens, and develops into two separate anti-symmetric cracks with complex shapes, somehow similar to bird wings. The computational DBEM results are found to be in good agreement with these experimental findings and with FEM results previously obtained. Consequently, also for this new case, with complex 3D crack growth behaviour of two cracks, the functionality of the proposed DBEM and FEM approaches can be stated.


Sign in / Sign up

Export Citation Format

Share Document