scholarly journals Similarity and dissimilarity of joint interface morphology in magnetic pulse welded Al/Cu and Al/Ni plates

2020 ◽  
Vol 326 ◽  
pp. 08004
Author(s):  
Shingo Kimura ◽  
Shinji Muraishi ◽  
Shinji Kumai

A characteristic wavy morphology often appears at the joint interface of magnetic pulse welding (MPW), and an intermediate layer is formed in some metal combinations. It has been known that the wavy morphology changes mainly depend on the density difference between the metals. A sinusoidal wavy interface is formed for the combination of similar metals (Al/Al, Cu/Cu) and that of dissimilar metals having almost the same density (Cu/Ni). In contrast, a trigger-like wavy interface is formed for the combination having a large density difference (Al/Cu, Al/Fe). The difference in strength (hardness) of the solid metal is also assumed to affect the wavy interface morphology. In the present study, two metal combinations (Al/Cu and Al/Ni) were subjected to the MPW to elucidate the effect of hardness difference, since Cu and Ni have almost the same density, but different hardness. Both the MPWed Al/Cu and Al/Ni joints showed a trigger-like wave interface. The wave size (wave-height and wavelength) of Al/Ni was smaller than that of Al/Cu. In Al/Ni, the distribution of intermediate phase was more continuous tracing the outline of the wave. The numerical simulation of the wave formation process was performed using the Smoothed Particle Hydrodynamics (SPH) method. It was revealed that the extent of metal jet penetration into the metal in the process of joining behind the collision point was weaker in Ni than in Cu. This is considered to be due to the larger deformation resistivity of Ni, which is harder than that of Cu.

2016 ◽  
Vol 877 ◽  
pp. 655-661 ◽  
Author(s):  
Junto Nishiwaki ◽  
Takashi Kambe ◽  
Yasutaka Kedo ◽  
Yohei Harada ◽  
Shinji Muraishi ◽  
...  

Magnetic pulse welding (MPW) which is one of the impact welding methods is suitable for a wide variety of combinations of similar and dissimilar metals. The flyer plate is accelerated by electromagnetic force and collided to the parent plate. A characteristic wavy interface is formed. The impact velocity and impact angle of the flyer plate during impact are important parameters which affect the interface morphology. In the case of dissimilar metals (e.g. Al/Cu, Al/Fe), the intermediate layer (such as intermetallic compound (IMC)) is formed by wavy interface formation and local temperature increase. The intermediate layer often decreases the bonding strength. Wavy interface formation mechanism and temperature increase at the joint interface should be investigated in order to obtain the dissimilar metal joint with high bonding strength. In this study, the impact velocity and impact angle of the flyer plate were obtained by using ANSYS Emag-Mechanical. Based on the obtained impact velocity and impact angle of the flyer plate in the MPW, the wavy interface formation and temperature change were reproduced by using ANSYS Autodyn for solving non-liner dynamics problems. Al sheets and Cu sheets were joined by the MPW. The joint interface was observed by OM and SEM and compared to the simulation result.


2019 ◽  
Vol 9 (24) ◽  
pp. 5435 ◽  
Author(s):  
Andrea Albano ◽  
Alessio Alexiadis

In this study, we propose a smoothed particle hydrodynamics model for simulating a shock wave interacting with cylindrical gas inhomogeneities inside a shock tube. When the gas inhomogeneity interacts with the shock wave, it assumes different shapes depending on the difference in densities between the gas inhomogeneity and the external gas. The model uses a piecewise smoothing length approach and is validated by comparing the results obtained with experimental and CFD data available in the literature. In all the cases considered, the evolution of the inhomogeneity is similar to the experimental shadowgraphs and is at least as accurate as the CFD results in terms of timescale and shape of the gas inhomogeneity.


2007 ◽  
Vol 566 ◽  
pp. 61-64 ◽  
Author(s):  
Katsumi Tanaka

A particular characteristic of an explosively produced weld is that the profile of the weld interface often has a regular wavy appearance. An effect of detached shock wave and jetting on the metal interface of explosive welding has been shown by SPH (Smoothed particle hydrodynamics). Numerical results show wavy interface which is observed in several experiments. High speed jet between interface and Karman vortex after oblique impact of a flyer plate to a parent plate were major mechanism of explosive welding.


2010 ◽  
Vol 654-656 ◽  
pp. 755-758 ◽  
Author(s):  
Mitsuhiro Watanabe ◽  
Shinji Kumai

Magnetic pulse welding was applied to the lap joining of similar (Al/Al) and dissimilar materials (Al/Fe, Al/Cu, and Al/Ni). The magnetic pulse welding is a kind of impact welding represented by explosive welding. The impact energy is induced by electromagnetic force generated by interaction among discharge pulse, induced magnetic flux, and eddy current produced at the plate surface. The welding was achieved within 10 microseconds with a negligible temperature increase. The welding interface exhibited a characteristic wavy morphology, which was similar to that of the explosive welding. In the Al/Fe, Al/Cu, and Al/Ni joints, an intermediate phase layer was produced along the wavy interface. In order to investigate microstructure of the intermediate phase layer, TEM observation of the welding interface was carried out. TEM observation revealed that the intermediate phase layer consisted of amorphous phase and fine crystal grains.


2021 ◽  
Vol 5 (2) ◽  
pp. 64
Author(s):  
Shunyi Zhang ◽  
Brad L. Kinsey

During magnetic pulsed welding (MPW), a wavy interface pattern can be observed. However, this depends on the specific material combination being joined. Some combinations, e.g., steel to aluminum, simply provide undulating waves, while others, e.g., titanium to copper, provide elegant vortices. These physical features can affect the strength of the joint produced, and thus a more comprehensive understanding of the material combination effects during MPW is required. To investigate the interfacial morphology and parent material properties dependency during MPW, tubular Al1100 and various copper alloy joints were fabricated. The influence of two material properties, i.e., yield strength and density, were studied, and the interface morphology features were visually investigated. Results showed that both material properties affected the interface morphology. Explicitly, decreasing yield strength (Cu101 and Cu110) led to a wavy interface, and decreasing density (Cu110 and CP-Ti) resulted in a wave interface with a larger wavelength. Numerical analyses were also conducted in LS-DYNA and validated the interface morphologies observed experimentally. These simulations show that the effect on shear stresses in the material is the cause of the interface morphology variations obtained. The results from this research provide a better fundamental understanding of MPW phenomena with respect to the effect of material properties and thus how to design an effective MPW application.


Author(s):  
Takashi Yamamoto ◽  
Tomohiro Yasuda

Smoothed Particle Hydrodynamics (SPH) is known as very useful method for large deformation problems, such as movement of wave absorbing blocks and sliding of caisson breakwater. Also, in the coastal area, boulders launched by tsunami and by high waves with typhoons (named tsunami boulders and storm boulders) are focused on because of risk assessment towards the tsunami or super typhoons. However, the difference of their movement mechanism have been rarely investigated in detail. This study aims to simulate the movement of the tsunami boulders and storm boulders, comparing with the hydraulic experiment, and evaluating the transport characteristics. Wave elevation and boulder displacement were reproduced in the numerical wave flume well compared to physical model. Also, there is difference between solitary and irregular waves when waves act on boulders.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/WOfXbU7m_8E


2008 ◽  
Vol 96 (6) ◽  
pp. 263-268 ◽  
Author(s):  
E. Mounif ◽  
V. Bellenger ◽  
A. Ammar ◽  
R. Ata ◽  
P. Mazabraud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document