scholarly journals New approach for the elucidation of the phenomena involved in the operation of vegetable oil extraction presses

OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 6
Author(s):  
Patrick Carré

In a context where the search for naturalness, the need to reduce the carbon footprint and the development of a decentralized crushing sector are intensifying, mechanical extraction is a technology that is regaining major importance for the industry. The performance of this technique remains far below what is desirable, while the understanding of the main phenomena involved in screw presses remains insufficient. This article, after a brief presentation of the state of the art of this discipline, presents a new model centered on the notions of pressure generation and plasticity. According to this approach, plasticity can account for parameters such as the water and oil content of oilseeds, their temperature, and their possible dehulling. Plasticity in turn would explain both the compressibility of the cake and its ability to resist the thrust of the screws, and consequently to generate pressure or to creep or flow backward depending on the geometry of the screw and the cage. The model must also incorporate the notions of compression velocity, friction, and the complexity of the interactions between these parameters and the impact of the succession of screw segments and cone rings. It has been built on observation and experience and gives an understanding of the need to work simultaneously on the conditioning and geometry of the presses to achieve improved performance in terms of energy, efficiency, and reduction of the temperatures experienced by the proteins and oils

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4155 ◽  
Author(s):  
Pedro Cumino ◽  
Wellington Lobato Junior ◽  
Thais Tavares ◽  
Hugo Santos ◽  
Denis Rosário ◽  
...  

Collaboration between multiple Unmanned Aerial Vehicles (UAVs) to set up a Flying Ad Hoc Network (FANET) is a growing trend since future applications claim for more autonomous and rapid deployable systems. The user experience on watching videos transmitted over FANETs should always be satisfactory even under influence of topology changes caused by the energy consumption of UAVs. In addition, the FANET must keep the UAVs cooperating as much as possible during a mission. However, one of the main challenges in FANET is how to mitigate the impact of limited energy resources of UAVs on the FANET operation in order to monitor the environment for a long period of time. In this sense, UAV replacement is required in order to avoid the premature death of nodes, network disconnections, route failures, void areas, and low-quality video transmissions. In addition, decision-making must take into account energy consumption associated with UAV movements, since they are generally quite energy-intensive. This article proposes a cooperative UAV scheme for enhancing video transmission and global energy efficiency called VOEI. The main goal of VOEI is to maintain the video with QoE support while supporting the nodes with a good connectivity quality level and flying for a long period of time. Based on an Software Defined Network (SDN) paradigm, the VOEI assumes the existence of a centrailized controller node to compute reliable and energy-efficiency routes, as well as detects the appropriate moment for UAV replacement by considering global FANET context information to provide energy-efficiency operations. Based on simulation results, we conclude that VOEI can effectively mitigate the energy challenges of FANET, since it provides energy-efficiency operations, avoiding network death, route failure, and void area, as well as network partitioning compared to state-of-the-art algorithm. In addition, VOEI delivers videos with suitable Quality of Experience (QoE) to end-users at any time, which is not achieved by the state-of-the-art algorithm.


Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


2018 ◽  
Vol 10 (12) ◽  
pp. 4688
Author(s):  
Marina Nikolić Topalović ◽  
Milenko Stanković ◽  
Goran Ćirović ◽  
Dragan Pamučar

Research was conducted to indicate the impact of the increased flow of thermal insulation materials on the environment due to the implementation of the new regulations on energy efficiency of buildings. The regulations on energy efficiency of buildings in Serbia came into force on 30 September 2012 for all new buildings as well as for buildings in the process of rehabilitation and reconstruction. For that purpose, the carbon footprint was analyzed in three scenarios (BS, S1 and S2) for which the quantities of construction materials and processes were calculated. The life cycle analysis (LCA), which is the basis for analyzing the carbon life cycle (LCACO2), was used in this study. Carbon Calculator was used for measuring carbon footprint, and URSA program to calculate the operational energy. This study was done in two phases. In Phase 1, the embodied carbon was measured to evaluate short-term effects of the implementation of the new regulations. Phase 2 included the first 10 years of building exploitation to evaluate the long-term effects of the new regulations. The analysis was done for the period of 10 years, further adjustments to the regulations regarding energy efficiency of the buildings in Serbia are expected in accordance with EU directives. The study shows that, in the short-run, Scenario BS has the lowest embodied carbon. In the long-run, after 3.66 years, Scenario S2 becomes a better option regarding the impact on the environment. The study reveals the necessity to include embodied carbon together with the whole life carbon to estimation the impact of a building on the environment.


2021 ◽  
Author(s):  
Arman Ferdowsi ◽  
Alireza Khanteymoori ◽  
Maryam Dehghan Chenary

In this paper, we introduce a new approach for detecting community structures in networks. The approach is subject to modifying one of the connectivity-based community quality functions based on considering the impact that each community's most influential node has on the other vertices. Utilizing the proposed quality measure, we devise an algorithm that aims to detect high-quality communities of a given network based on two stages: finding a promising initial solution using greedy methods and then refining the solutions in a local search manner. The performance of our algorithm has been evaluated on some standard real-world networks as well as on some artificial networks. The experimental results of the algorithm are reported and compared with several state-of-the-art algorithms. The experiments show that our approach is competitive with the other well-known techniques in the literature and even outperforms them. This approach can be used as a new community detection method in network analysis.


Author(s):  
Jaagup Ainsalu ◽  
Ville Arffman ◽  
Mauro Bellone ◽  
Maximilian Ellner ◽  
Taina Haapamäki ◽  
...  

Urban transportation in the next few decades will shift worldwide towards electrification and automation, with the final aim of increasing energy efficiency and safety for passengers. Such a big change requires strong collaboration and efforts among public administration, research and stakeholders in developing, testing and promoting these technologies in the public transportation. Working in this direction, in the present work the impact of the introduction of driverless electric minibuses, for the first and last mile transportation, in the public service is studied. More specifically, this paper covers a state of the art in terms of technological background for automation, energy efficiency via electrification, and the current state of the legal framework in Europe with focus on the Baltic Sea Region.


Author(s):  
Jaagup Ainsalu ◽  
Ville Arffman ◽  
Mauro Bellone ◽  
Maximilian Ellner ◽  
Taina Haapamäki ◽  
...  

Urban transportation in the next few decades will shift worldwide towards electrification and automation, with the final aim of increasing energy efficiency and safety for passengers. Such a big change requires strong collaboration and efforts among public administration, research and stakeholders in developing, testing and promoting these technologies in the public transportation. Working in this direction, in the present work the impact of the introduction of driverless electric minibuses, for the first and last mile transportation, in the public service is studied. More specifically, this paper covers a state of the art in terms of technological background for automation, energy efficiency via electrification, and the current state of the legal framework in Europe with focus on the Baltic Sea Region.


Author(s):  
A.I. Glushchenko ◽  
M.Yu. Serov

В статье рассматривается вопрос совершенствования системы управления параллельно-работающими насосными агрегатами с целью повышения энергоэффективности их работы. Проведено сравнение и выявление недостатков существующих методов решения рассматриваемой проблемы. Предложена идея нового подхода на базе онлайн оптимизации. The problem under consideration is improvement of the energy efficiency of a control system of parallel-running pump units. Known methods used to solve this problem are considered. Their advantages and disadvantages are shown. Finally, the idea of a new approach, which is based on online optimization, is proposed.


Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


Sign in / Sign up

Export Citation Format

Share Document