scholarly journals Dubai, the sustainable, smart city

2022 ◽  
Vol 7 ◽  
pp. 3
Author(s):  
Riadh AL-Dabbagh

Over the years, Dubai − UAE has achieved undoubtedly fascinating development in city styles and construction. The desert has been transferred to an advanced modern city with the tallest buildings in a considerable time. It has always encouraged achieving healthy and sustainable development in all sectors, explicitly building construction. It has and still working towards maintaining the balance between socio-economic development and environmental protection. It has been announced and put within the national vision that it is of priority for the Government to transform Dubai into a smart city with an eco-friendly economy. This is under the aim to make it the most sustainable city in the world by 2021. The other Emirates are also trying to build their own fully sustainable cities. A sustainable plan is “a building that reduces its environmental impact by decreasing energy and water use and reducing the waste production. Dubai's Green Building Regulations and Specifications encourage all contractors to build toward an eco-friendlier tomorrow, maintaining the future cohorts without negatively impacting the resident's health. It covers a wide range of topics related to green building design, including ecology planning, building vitality, resource efficiency in energy, water, materials, and waste management. Dubai has made the environment a part of its overall strategic plan, including many sub-plans, initiatives, and projects to improve the emirate's environmental conditions and reduce energy use. Dubai's strategic plan to become a green metropolis includes green buildings and green building materials. The difficulties that sustainable urban development presents are considerable. They are working on various techniques to lead today's urbanisation toward sustainability, including urban planning, transportation infrastructure, quality of life, and renewable energy use, to name a few. Green construction and green towns are part of a long-term national drive in the UAE to promote a green economy with the tagline “A green economy for sustainable development”. This paper is highlighting the advanced initiatives, technologies, materials, strategies, difficulties and challenges that Dubai has been through to achieve sustainable smart city goals.

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2013 ◽  
Vol 357-360 ◽  
pp. 1070-1073
Author(s):  
Bao Zhu Sheng

Building material is the base of civil engineering construction, in the history of thousands of years of development, building materials also gradually change and change, and is closely related to the progress of human civilization and the development of science and technology.Green building materials has the vital significance to the construction of a conservation-oriented society and sustainable development, in accordance with China's social development.This paper introduces the importance of the development of green building materials,analyzes some factors influencing the development of green building materials in China,and discusses the development tendency of green building materials in China.


2011 ◽  
Vol 280 ◽  
pp. 165-170
Author(s):  
Shi Jin Wang

Green building materials as an important factor plays important role in the promote sustainable development. However, at present a unified understanding on the green building materials in China have not been formed,the evaluation system of green building materials is not perfect.In this paper,the concept and features of green building materials are discussed deeply,and life cycle model is used to evaluate the green building materials.The status and future trend of green building materials are discussed too.


Author(s):  
Jeremy Gibberd

Buildings are responsible for 40% of global energy use and produce over a third of global greenhouse gas emissions. These impacts are being acknowledged and addressed in specialist building design techniques and technologies that aim to reduce the environmental impacts of buildings. These techniques and technologies can be referred to collectively as green building technologies. This chapter describes green building technologies and shows why they are vital in addressing climate change and reducing the negative environmental impacts associated with built environments. A structured approach is presented which can be applied to identify and integrate green building technologies into new and existing buildings. By combining global implications with technical detail, the chapter provides a valuable guide to green building technologies and their role in supporting a transition to a more sustainable future.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


Buildings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 150 ◽  
Author(s):  
Jouri Kanters

Stricter building regulations have resulted in the construction of buildings with a low energy use during the operation phase. It has now become increasingly important to also look at the embodied energy, because it might, over the lifespan of the building, equal the energy used for operating the building. One way to decrease the embodied energy is to reuse building materials and components or to prepare the building for deconstruction; a term called design for deconstruction (DfD). While design for deconstruction has showed environmental, social, and economic benefits, hardly any building designed and built today is designed for deconstruction. The aim of this literature review is to understand the state-of-art of design for deconstruction and how it affects the design process. In most of the literature, general construction principles are specified that promote the design for deconstruction and focus on (a) the overall building design, (b) materials and connections, (c) construction and deconstruction phase, and (d) communication, competence, and knowledge. Furthermore, the reuse potential of specific building materials is discussed, as well as the available tools for DfD. Additionally, the current barriers for DfD as specified by the literature show lack of competence, regulations, and other related elements.


1970 ◽  
Vol 1 (1) ◽  
Author(s):  
Gao Hong

Abstract:  In  order  to continually meet the growing material and cultural needs of the people, leads to increasing scale in construction, to a certain extent, has accelerated the pace of urban construction in China,but also exposed many shortcomings. For example,the energy consumption of the construction industry is too large, it is pernicious to the sustainable development of modern society in China, and the substance of green building is use of energy-saving harmless resources to build a comfortable and healthy living environment,to ensure the quality of living environment and reduce the threat to health of human. With the strength of economic benefits,energy conservation and other advantages, making a major contributions to the economic environment. Therefore, this research will study from the relevant requirements of green building design,in-depth discussion of green building design techniques as a reference for the industry practitioners.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Mona Azouz

Sustainable development has become a significant worldwide concern. The past few years have seen a lot of changes. Some of these affect how we do approach - and how we should approach - environmental issues. Because of their adverse impacts to sustainability, knowledge about building materials became a crucial dimension of green change in building and design. The problem is that in Egypt there is still no database for green building ma-terials. In spite that there are currently over 120 international green labelling programs for building materials worldwide, they cannot be locally used. This is because building materials and the way they are extracted, manufactured, used, transported, recycled or disposed differ from country to country. All these factors result in insufficiency of data & information on green building materials and those who are involved in the design, construction & man-agement of building materials are acutely lacking the basic information on materials that would allow them to make constructive changes. That's why the introduction of a system for specification, assessment & se-lection of green building materials is considered to be one of the corner-stones of promoting sustainable green building development in Egypt as an attempt to fulfil Goal 11 of the Sustainable Development Goals developed by the United Nations to make cities inclusive, safe, resilient and sustainable by 2030. The aim of the research is to develop a framework for a system for evaluat-ing sustainability of building materials in Egypt to achieve greener steps to-wards sustainability with a new way of scoring sustainability of building materials that evaluates both positive & negative ecological, social & health and economic impacts through the whole life cycle. This system could be applied in the development of the New Cites that considers the unique chal-lenges of the region and the local market and could be applied all over the country taking into consideration the nature of each region with its available building materials and specific climatic conditions and the different regional priorities and requirements. The research was based on an inductive approach through studying & analy-sis of the life cycle of the building materials, the different aspects and crite-ria for the evaluation of green building materials, currently available re-sources of information about building materials in Egypt and the interna-tional & national reference values & benchmarks that could be used as a base for the new system. Findings will lead to a proposed framework of a system for specification and assessment of green building materials in Egypt. This framework de-scribes all the kind of information required and the procedures that should be taken for the development of the system from collecting data till the es-tablishment of online guide for green building materials and a digital library for accessible and reliable information on green building materials that ena-bles building designers, constructors and developers to make reasoned choices based upon the health & environmental impacts of their decisions and eases the use & selection of Green Building materials in Egypt over the coming years.


2015 ◽  
Vol 13 (3) ◽  
pp. 219-231 ◽  
Author(s):  
Gordana Toplicic-Curcic ◽  
Dusan Grdic ◽  
Nenad Ristic ◽  
Zoran Grdic

Building in harmony with nature has a small impact on the environment, while meeting the basic needs of the population. Green architecture is a branch of architecture including planning, designing and building of various kinds of buildings, with a low impact on the environment. Construction of the so-called ?green structures? is in accord with the concept of sustainability and it attempts to balance environmental, economical and social needs. Environmentally appropriate materials are used in construction of this type of structures, which during their production, application and distribution pollute as little as possible the water, soil and air in the environment. The more sustainable the building materials used for construction are, the more sustainable is the structure and its operation with renewable energy sources. The paper considers ceramic facade elements, i.e. cladding. By using ceramic facade cladding, one achieves a better preception of an urban environment, which enriches our lives for new sensual and visual quality, while observing the green building requirements.


2020 ◽  
Vol 10 (21) ◽  
pp. 7388
Author(s):  
Wael Alattyih ◽  
Husnain Haider ◽  
Halim Boussabaine

Green buildings are playing a pivotal role in sustainable urban development around the world, including Saudi Arabia. Green buildings subject to various sources of risk that influence the potential outcomes of the investments or services added in their design. The present study developed a structured framework to examine various risks that may lead to green buildings’ value destruction in Saudi Arabia. The framework initiates with identification of 66 potential risk factors from reported literature. A questionnaire compiling a list of identified risk factors was hand-delivered to 300 practitioners (managers, engineers, and architects) having knowledge of value engineering in the construction industry, and an overall response rate of 29.7% was achieved. Subsequently, descriptive statistics ranked the risk factors based on scores given by the respondents. The principal component analysis extracted 16 components, based on the likelihood of risk factors impacting the value created by green building design. Finally, the factor analysis grouped the 35 most significant risk factors in 5 clusters—i.e., 8 in functional risk, 13 in financial risk, 3 in operational risk, 3 in environmental risk, and 8 in management risk cluster. The study enhances the understanding of the importance of the risk factors’ impact on value creation. Based on the results, the value management (or engineering) teams and the top-level management can identify, manage, and control the risk factors that have a significant impact on the project value created by green building design.


Sign in / Sign up

Export Citation Format

Share Document