scholarly journals Computational modeling of battery thermal energy management system using phase change materials

Author(s):  
Pusapati Laxmi Narasimha Raju ◽  
Chalumuru Manas ◽  
Harish Rajan

Similar to an IC (Internal combustion) engine which requires cooling to operate at optimum temperature for better efficiency; electric vehicles do require a similar system. There are various methods used in the current market for thermal management of batteries, of these our paper focuses on phase change materials (PCM). This cooling strategy can store an enormous amount of heat produced inside a battery because of its high latent heat capability. A 3D model of the battery using the multi-scale multi-dimension model (MSMD) for battery simulation and Solidification/melting models were used to showcase the melting of PCM due to the heat generated from a cell. ANSYS fluent was used to carry out the simulations. These computations are carried out at different C-rate to find the time taken for a battery to discharge and to find the impact of C-rate on PCM performance. Besides, temperature data for the cell was recorded before and after PCM was involved to compare the temperature difference between various PCM's.

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 363 ◽  
Author(s):  
Wanchun Sun ◽  
Yan Zhou ◽  
Jinxin Feng ◽  
Xiaoming Fang ◽  
Ziye Ling ◽  
...  

Developing phase change materials (PCMs) with suitable phase change temperatures and high latent heat is of great significance for accelerating the development of latent heat storage technology to be applied in solar water heating (SWH) systems. The phase change performances of two mixtures, NH4Al(SO4)2·12H2O-MgCl2·6H2O (mixture-A) and KAl(SO4)2·12H2O-MgCl2·6H2O (mixture-B), were investigated in this paper. Based on the DSC results, the optimum contents of MgCl2·6H2O in mixture-A and mixture-B were determined to be 30 wt%. It is found that the melting points of mixture-A (30 wt% MgCl2·6H2O) and mixture-B (30 wt% MgCl2·6H2O) are 64.15 °C and 60.15 °C, respectively, which are suitable for SWH systems. Moreover, two mixtures have high latent heat of up to 192.1 kJ/kg and 198.1 kJ/kg as well as exhibit little supercooling. After 200 cycles heating-cooling experiments, the deviations in melting point and melting enthalpy of mixture-A are only 1.51% and 1.20%, respectively. Furthermore, the XRD patterns before and after the cycling experiments show that mixture-A possesses good structure stability. These excellent thermal characteristics make mixture-A show great potential for SWH systems.


2021 ◽  
Author(s):  
Omar Siddiqui

The applicability of utilizing a variety of thermal mass including phase change materials with commonly used building materials is investigated through the use of simulations and physical testing. The thermal performance and occupant comfort potential of a novel solid-solid phase change material, known as Dal HSM, is compared and contrasted to commonly available forms of thermal mass. Detailed experimentation is conducted to successfully integrate Dal HSM with gypsum and concrete. The measurement of physical characteristics such as compressive strength and modulus of rupture is conducted to ensure that the PCM-composite compound retains the structural integrity to be utilized in a typical building. The use of thermal mass in the Toronto Net Zero house was found to contribute to energy savings of 10-15% when different types of thermal mass were used. The comfort level of the indoor occupants was also found to increase. The performance of Dal HSM was found to be comparable to a commercially available PCM known as Micronal in the heating mode. The cooling mode revealed that Dal HSM provided slightly lower energy savings when compared to Micronal due to a lower phase transition temperature and latent heat. The performance of physical test revealed a decrease in the compressive strength as the concentration of Dal HSM was increased in the PCM-gypsum specimens. Tests were also performed to analyze the impact of increasing the PCM concentration on the flexural strength of PCM-gypsum composite.


2020 ◽  
Vol 396 ◽  
pp. 125265 ◽  
Author(s):  
Yunzhi Tan ◽  
Yu Xiao ◽  
Rui Chen ◽  
Changlin Zhou ◽  
Lei Wang ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 284 ◽  
Author(s):  
Nadezhda S. Bondareva ◽  
Nikita S. Gibanov ◽  
Mikhail A. Sheremet

The cooling of electronic elements is one of the most important problems in the development of architecture in electronic technology. One promising developing cooling method is heat sinks based on the phase change materials (PCMs) enhanced by nano-sized solid particles. In this paper, the influence of the PCM’s physical properties and the concentration of nanoparticles on heat and mass transfer inside a closed radiator with fins, in the presence of a source of constant volumetric heat generation, is analyzed. The conjugate problem of nano-enhanced phase change materials (NePCMs) melting is considered, taking into account natural convection in the melt under the impact of the external convective cooling. A two-dimensional problem is formulated in the non-primitive variables, such as stream function and vorticity. A single-phase nano-liquid model is employed to describe the transport within NePCMs.


Author(s):  
Levi J. Elston

The ever-increasing power throughput and ever-decreasing size of modern electronics, specifically power electronics, requires more advanced packaging techniques and materials to maintain thermal limits and sustain mechanical life. Specific applications with known operating conditions for these components can realize added benefits through a tailored thermal-mechanical-electrical optimized assembly, potentially utilizing niche material classes. Without losing any expected functionality, solid-liquid phase change materials could be incorporated into the device structure to reduce peak temperature and/or suppress high-cycle fatigue problems commonly found at die-attachment interfaces. The purpose of this study was to investigate, through model-based design and analysis, the impact of using organic phase-change materials (PCMs) at two strategic locations in the standard device stack. The results suggest noteworthy life improvement (40%) is possible when optimizing for a given melt point material. Additionally, further improvements were predicted through future material enhancements, namely thermal conductivity and latent heat.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 159
Author(s):  
Daniela Szilard ◽  
Patrícia P. Abrantes ◽  
Felipe A. Pinheiro ◽  
Felipe S. S. Rosa ◽  
Carlos Farina ◽  
...  

We investigate optical forces on oscillating dipoles close to a phase change vanadium dioxide (VO2) film, which exhibits a metal-insulator transition around 340 K and low thermal hysteresis. This configuration emulates the interaction between an illuminated nanosphere and an interface and we employ a classical description to capture its important aspects. We consider both electric and magnetic dipoles for two different configurations, namely with the dipole moments parallel and perpendicular to the VO2 film. By using Bruggeman theory to describe the effective optical response of the material, we show that the thermal hysteresis present in the VO2 transition clearly shows up in the behavior of optical forces. In the near-field regime, the force on both dipoles can change from attractive to repulsive just by heating (or cooling) the film for a selected frequency range. We also verified that the optical forces are comparable to the Casimir-Polder force in a similar system, revealing the possibility of modulating or even changing the sign of the resultant force on an illuminated nano-object due to the presence of a thermochromic material. We hope that this work contributes to set the grounds for alternative approaches to control light-matter interactions using phase-change materials.


2021 ◽  
Vol 11 (19) ◽  
pp. 9166
Author(s):  
Anna Zastawna-Rumin ◽  
Katarzyna Nowak

The use of phase change materials (PCM) in different building applications is a hot topic in today’s research and development activities. Numerous experimental tests confirmed that the hysteresis of the phase change process has a noticeable effect on heat accumulation in PCM. The authors are trying to answer the question of whether the neglecting of hysteresis or the impact of the speed of phase transformation processes reduce the accuracy of the simulation. The analysis was performed for a model building, created to validate the energy calculations. It was also important to conduct simulations for the polish climatic conditions. The calculations were conducted for three variants of materials. In addition, in the case of models containing layers with PCM, calculations were made both taking into account, as well as excluding material hysteresis in the calculations. In the analyzed examples, after taking into account hysteresis in the calculations, the period of time when surface temperature is below the phase change temperature of the materials decreased by 10.6% and 29.4% between 01 June to 30 September, for the options with PCM boards and Dupont boards, respectively. Significant differences in surface temperature were also observed. The effects of neglecting, even relatively small hysteresis, in the calculations are noticeable and can lead to significant errors in the calculation.


Author(s):  
Nancy González-Cervantes ◽  
Mercedes Salazar-Hernández ◽  
Miroslava Cano-Lara ◽  
Carmen Salazar-Hernández

Today, the effective renewable energy sources are research topics, with direct solar radiation being one of the best sources of energy. However, the use of this form of energy is optimized with the development of technologies for storage (TES). One of the proposed techniques for solar energy storage is the application of phase change materials (PCMs). Several candidates of phase change materials such as organic and inorganic and their mixtures have been proposed as energy storage because they have a high latent heat. However, a disadvantage of these materials is their decomposition during storage and energy release cycles, therefore, in this project it is proposed to encapsulate PCMs in mesoporous silica networks in order to increase thermal stability.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012115
Author(s):  
T Swoboda ◽  
K Klinar ◽  
A Kitanovski ◽  
M Muñoz Rojo

Abstract Thermal diodes are devices that allow heat to flow preferentially in one direction. This unique thermal management capability has attracted attention in various applications, like electronics, sensors, energy conversion or space applications, among others. Despite their interest, the development of efficient thermal diodes remains still a challenge. In this paper, we report a scalable and adjustable thermal diode based on a multilayer structure that consists of a combination of phase change and phase invariant materials. We applied a parametric sweep in order to find the optimum conditions to maximize the thermal rectification ratio. Our simulations predicted a maximum thermal rectification ratio of ~20%. To evaluate the impact of these devices in real applications, we theoretically analysed the performance of a magnetocaloric refrigerating device that integrates this thermal diode. The results showed a 0.18 K temperature span between the heat source and the heat sink at an operating frequency of 25 Hz.


Sign in / Sign up

Export Citation Format

Share Document