Recognition of Symmetry as a Powerful Tool in Natural Product Synthesis

Synthesis ◽  
2021 ◽  
Author(s):  
Corinna S Schindler ◽  
Lara Cala ◽  
Mario A Gaviria ◽  
Scott L Kim ◽  
Trenton R Vogel

The design of concise and efficient synthetic strategies to access naturally occurring, pharmaceutically active complex molecules is of utmost importance in current chemistry. It not only enables rapid access to these molecules and their analogues but also provides sufficient quantities for their biological evaluation. Identification of any symmetric or pseudosymmetric synthetic intermediates upon retrosynthetic bond disconnection of the target molecule holds the promise to significantly streamline the route towards the compound of interest. This review will highlight recent examples of successful natural product syntheses reported within the past five years that benefited from the recognition of symmetry elements during the retrosynthetic design.

Synthesis ◽  
2021 ◽  
Author(s):  
Weilong Liu ◽  
Nicolas Winssinger

The α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.


2010 ◽  
Vol 5 (10) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Haining Lv ◽  
Gaimei She

Diarylheptanoids, natural products with a 1,7-diphenylheptane structural skeleton, are mainly distributed in the roots, rhizomes and bark of Alpinia, Zingiber, Curcuma and Alnus species. They have become of interest in natural product research over the past twenty years because of their remarkable anticancer, anti-emetic, estrogenic, antimicrobial and antioxidant activity. This paper compiles all 307 naturally occurring diarylheptanoids from 46 plants as reported in 137 references with their distributions, physiological activities and 13C-NMR spectral data.


2018 ◽  
Vol 14 ◽  
pp. 1778-1805 ◽  
Author(s):  
Fateh V Singh ◽  
Priyanka B Kole ◽  
Saeesh R Mangaonkar ◽  
Samata E Shetgaonkar

Hypervalent iodine reagents have been developed as highly valuable reagents in synthetic organic chemistry during the past few decades. These reagents have been identified as key replacements of various toxic heavy metals in organic synthesis. Various synthetically and biologically important scaffolds have been developed using hypervalent iodine reagents either in stoichiometric or catalytic amounts. In addition, hypervalent iodine reagents have been employed for the synthesis of spirocyclic scaffolds via dearomatization processes. In this review, various approaches for the synthesis of spirocyclic scaffolds using hypervalent iodine reagents are covered including their stereoselective synthesis. Additionally, the applications of these reagents in natural product synthesis are also covered.


Synlett ◽  
2020 ◽  
Vol 31 (05) ◽  
pp. 403-420 ◽  
Author(s):  
Rodney A. Fernandes ◽  
Anupama Kumari ◽  
Ramdas S. Pathare

The Dötz benzannulation is a named reaction that utilizes Fischer chromium carbenes in a formal [3+2+1] cycloaddition with an alkyne and CO to produce the corresponding benzannulated product. Since its development in the 1970s, this reaction has been extensively used in the synthesis of natural products and various molecular architectures. Although the reaction sometimes suffers from the formation of other competing side products, the rapid construction of naphthol structures with a 1,4-dihydroxy unit makes it the most appropriate reaction for the synthesis of p-naphthoquinones. This review focuses on our group’s efforts over the past decade on the extensive use of this annulation reaction along with the contributions of others on the synthesis of different natural products.1 Introduction2 General Description and Mechanism of the Dötz Benzannulation Reaction3 Applications of the Dötz Benzannulation in Natural Product Synthesis over the Last Decade4 Conclusion


Synlett ◽  
2020 ◽  
Author(s):  
Hans Renata

AbstractCatalytic C–H oxidation is a powerful transformation with enormous promise to streamline access to complex molecules. In recent years, biocatalytic C–H oxidation strategies have received tremendous attention due to their potential to address unmet regio- and stereoselectivity challenges that are often encountered with the use of small-molecule-based catalysts. This Account provides an overview of recent contributions from our laboratory in this area, specifically in the use of iron- and α-ketoglutarate-dependent dioxygenases in chemoenzymatic syntheses of complex natural products.1 Introduction2 Overview of Natural Oxygenases3 C5 Hydroxylation of Aliphatic Amino Acids4 Chemoenzymatic Synthesis of Tambromycin5 Chemoenzymatic Synthesis of Cepafungin I and Related Analogues6 Chemoenzymatic Synthesis of GE81112 B1 and Related Analogues7 Conclusion and Future Direction


Author(s):  
Min Chen ◽  
Xueyang Ren ◽  
Siqi Sun ◽  
Xiuhuan Wang ◽  
Xiao Xu ◽  
...  

Background: Flavonoid glucuronides are a kind of natural products which present a flavone linked directly with one or several glucuronides through O-glycoside bond. They had become of interest in natural product research in the past decades for their antioxidant, anti-inflammatory, and anti-bacteria activities. In particular, the compound breviscapine has a notable effect on cardio-cerebrovascular diseases. Several other compounds even have antitumor activity. Methods: Through searching the database and reading a large number of documents, we summarized the related findings of flavonoid glucuronides. Results: We summarized 211 naturally occurring flavonoid glucuronides in 119 references with their chemical structures, biological activities, and metabolism. A total of 220 references from 1953 to 2020 were cited in this paper according to literature databases such as CNKI, Weipu, Wanfang data, Elsevier, Springer, Wiley, NCBI, PubMed, EmBase, etc. Conclusion : Flavonoid glucuronides are a class of compounds with various chemical structures and a diverse range of biological activities. And they are thought to be potential candidates for drug discovery, but the specific study on their mechanisms is still limited until now. We hope this article can provide references for natural product researchers and draw more attention to flavonoid glucuronides’ biological activities and mechanisms.


2014 ◽  
Vol 10 (1) ◽  
pp. 81-93
Author(s):  
Laurel Smith Stvan

Examination of the term stress in naturally occurring vernacular prose provides evidence of three separate senses being conflated. A corpus analysis of 818 instances of stress from non-academic texts in the Corpus of Contemporary American English (COCA) and the Corpus of American Discourses on Health (CADOH) shows a negative prosody for stress, which is portrayed variously as a source outside the body, a physical symptom within the body and an emotional state. The data show that contemporary speakers intermingle the three senses, making more difficult a discussion between doctors and patients of ways to ‘reduce stress’, when stress might be interpreted as a stressor, a symptom, or state of anxiety. This conflation of senses reinforces the impression that stress is pervasive and increasing. In addition, a semantic shift is also refining a new sense for stress, as post-traumatic stress develops as a specific subtype of emotional stress whose use has increased in circulation in the past 20 years.


2018 ◽  
Author(s):  
Jonathan J. Mills ◽  
Kaylib R. Robinson ◽  
Troy E. Zehnder ◽  
Joshua G. Pierce

The lipoxazolidinone family of marine natural products, with an unusual 4-oxazolidinone heterocycle at their core, represents a new scaffold for antimicrobial discovery; however, questions regarding their mechanism of action and high lipophilicity have likely slowed follow-up studies. Herein, we report the first synthesis of lipoxazolidinone A, 15 structural analogs to explore its active pharmacophore, and initial resistance and mechanism of action studies. These results suggest that 4-oxazolidinones are valuable scaffolds for antimicrobial development and reveal simplified lead compounds for further optimization.


2019 ◽  
Author(s):  
Lars Gnägi ◽  
Severin Vital Martz ◽  
Daniel Meyer ◽  
Robin Marc Schärer ◽  
Philippe Renaud

<div><div><div><div><p>A very concise total synthesis of (+)-brefeldin C starting from 2-furanylcyclopentene is described. This approach is based on an unprecedented enantioselective radical hydroalkynylation process to introduce the two cyclopentane stereocenters in a single step. The use of a furan substituent allows to achieve a high trans diastereoselectivity during the radical process and it contains the four carbon atoms C1–C4 of the natural product in an oxidation state closely related to the one of the target molecule. The eight-step synthesis require six product purifications and it provides (+)-brefeldin C in 18% overall yield.</p></div></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document