Ascending of Cycloaddition Strategy for N-O Heterocycles

Synthesis ◽  
2021 ◽  
Author(s):  
Prasanjit Ghosh ◽  
Swati Lekha Mondal ◽  
Mahiuddin Baidya

The N–O heterocycles are biologically relevant scaffolds and versatile building blocks in contemporary organic synthesis. In this short review, we effort to showcase the involvement and elevation of various cycloaddition strategies towards the production of N–O heterocycles 1,2-oxazines, 1,2-oxazepanes, and 1,2-oxazetidines. A blueprint of advantages and challenges associated with these synthetic endeavors is provided.

Synthesis ◽  
2018 ◽  
Vol 50 (21) ◽  
pp. 4216-4228 ◽  
Author(s):  
Rafael Gramage-Doria ◽  
Yu-Chao Yuan ◽  
Christian Bruneau

Phthalimides have found their main application in organic synthesis as protecting groups for primary amines during the multistep synthesis of biologically relevant targets. On the other hand, phthalimide functionalization is rather challenging and it is traditionally associated with the use of over-stoichiometric amounts of environmentally hazardous reagents. In this short review, we describe and discuss how, in the last decades, transition-metal catalysts have provided useful organic building blocks after selective transformation of the phthalimide skeleton in a more efficient and sustainable manner.1 Introduction2 Partial Carbonyl Reduction3 Full Carbonyl Reduction4 Aromatic Ring Reduction5 Five-Membered-Ring Opening6 Conclusion


Synthesis ◽  
2018 ◽  
Vol 50 (13) ◽  
pp. 2473-2489 ◽  
Author(s):  
Amanda da Silva ◽  
Alessandra Fernandes ◽  
Samuel Thurow ◽  
Mateus Stivanin ◽  
Igor Jurberg

Isoxazol-5-one rings have been identified as relevant motifs in drug candidates, agrochemicals, and materials. Furthermore, this heterocycle has been also applied as a versatile building block for the preparation of a variety of densely functionalized molecules. This short review will present the most representative applications of isoxazol-5-ones in organic synthesis while discussing their properties and reactivity.1 Introduction1.1 General Aspects1.1.1 Tautomerism1.1.2 Importance: Natural Products Isolation, Biological Activity, and Materials1.1.3 Preparation Methods2 Isoxazol-5-ones in Organic Synthesis2.1 General Reactivity2.2 Specific Examples2.2.1 Alkylation Strategies2.2.2 Alkyne Synthesis2.2.3 Annulation Reactions2.2.4 N–O Bond Insertions2.2.4.1 Preparation of 1,3-Oxazin-6-ones3 Conclusions


Synthesis ◽  
2020 ◽  
Author(s):  
Chuan Wang ◽  
Shixia Su

AbstractAsymmetric dihydroxylation of alkenes is one of the cornerstone reactions in organic synthesis, providing a direct entry to optically active vicinal diols, which are not only a subunit in natural products but also versatile building blocks. In recent years, considerable progress in catalytic asymmetric osmium-free dihydroxylation has been achieved. This short review presents a concise summary of the reported methods of catalytic asymmetric osmium-free dihydroxylation.1 Introduction2 Iron-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes3 Manganese-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes4 Palladium/Gold Bimetallic Nanocluster-Catalyzed Asymmetric syn-Dihydroxylation of Alkenes5 Enzyme-Catalyzed Asymmetric anti-Dihydroxylation of Alkenes6 Amine-Catalyzed Asymmetric Formal anti-Dihydroxylation of Enals7 Diselenide-Catalyzed anti-Dihydroxylation of Alkenes8 Molybdenum-Catalyzed Asymmetric anti-Dihydroxylation of Allylic­ Alcohols9 Phase-Transfer-Catalyzed Asymmetric Dihydroxylation of α-Aryl Acrylates10 Conclusion


Synthesis ◽  
2021 ◽  
Author(s):  
Wei-Wei Liao ◽  
Shu-Qiang Cui

AbstractTransition-metal-catalyzed C–H bond addition to nitriles has emerged as a powerful synthetic approach for the construction of C–C bonds in organic synthesis. Due to the merits of atom- and step-economy, as well the easy availability of the starting materials, these transformations not only deliver acyclic aryl ketone products with nitriles­ as C-building blocks, but can also be utilized for the highly efficient­ assembly of azaheterocyclic skeletons using nitriles as C–N building blocks. This short review summarizes recent progress on transition-metal-catalyzed C–C bond-forming reactions based on C(sp2)–H and C(sp3)–H additions to nitriles.1 Introduction2 Palladium-Catalyzed C–H Addition to Nitriles2.1 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Ketone (Imine) Products2.2 Palladium-Catalyzed C–H Addition to Nitriles for the Preparation of Azaheterocycles2.3 Palladium-Catalyzed C–H Addition to Nitriles/1,2-Rearangement3 Other Transition-Metal-Catalyzed C–H Additions to Nitriles4 Summary and Outlook


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2020 ◽  
Vol 17 (7) ◽  
pp. 540-547
Author(s):  
Chun-Hui Yang ◽  
Cheng Wu ◽  
Jun-Ming Zhang ◽  
Xiang-Zhang Tao ◽  
Jun Xu ◽  
...  

Background: The sulfinic esters are important and useful building blocks in organic synthesis. Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters. Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters. Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.


2021 ◽  
Author(s):  
Anurag Mukherjee ◽  
Suhrit Ghosh

Naphthalene-diimide (NDI) derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional material. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.


Sign in / Sign up

Export Citation Format

Share Document