Microbiological and clinical effects of a Proanthocyanidin-enriched extract from Rumex acetosa in periodontally healthy carriers of Porphyromonas gingivalis

Planta Medica ◽  
2021 ◽  
Author(s):  
Sabine Selbach ◽  
Astrid Klocke ◽  
Ulrike Peters ◽  
Sabine Beckert ◽  
Munro Rory Watt ◽  
...  

Rumex acetosa significantly inhibits the adhesion of Porphyromonas gingivalis (P.g.) to eukaryotic host cells in vitro. The objective of this randomized placebo-controlled pilot-trial was to analyze effects of a mouth rinse containing 0.8 % (w/w) of a quantified proanthocyanidin-enriched extract from Rumex acetosa (RA1) on microbiological, clinical, and cytological parameters in systemically healthy individuals without history of periodontitis, harboring P.g. intraorally. 35 subjects received a supragingival debridement (SD) followed by mouth rinsing (3 times daily) with either RA1 mouth rinse solution (test) or placebo (control) for 7 days as adjunct to routine oral hygiene. Supragingival biofilm samples were taken at screening visit, baseline (BL), 2, 4, 7 and 14 days after SD. P.g. and 11 other oral microorganisms were detected and quantified by rtPCR. Changes in the oral microbiota composition of one test and one control subject were assessed via high throughput 16S rRNS gene amplicon sequencing. Approximal Plaque Index (API) and the modified Sulcular Bleeding Index (SBI) were assessed at BL, 7- and 14-days following SD. Brush biopsies were taken at BL and 14 d following SD. Intergroup comparisons revealed no significant microbiological, cytological, and clinical differences at any timepoint. However, a significant reduction in SBI at day 14 (p=0.003) and API at day 7 (p=0.02) and day 14 (p=0.009) was found in the test group by intragroup comparison. No severe adverse events were observed. The results indicate that RA1 mouth rinse is safe but does not seem to inhibit colonization of P.g. or improve periodontal health following SD.

Author(s):  
Jogendra Singh Nim ◽  
Mohit Yadav ◽  
Lalit Kumar Gautam ◽  
Chaitali Ghosh ◽  
Shakti Sahi ◽  
...  

Background: Xenorhabdus nematophila maintains species-specific mutual interaction with nematodes of Steinernema genus. Type II Toxin Antitoxin (TA) systems, the mazEF TA system controls stress and programmed cell death in bacteria. Objective: This study elucidates the functional characterization of Xn-mazEF, a mazEF homolog in X. nematophila by computational and in vitro approaches. Methods: 3 D- structural models for Xn-MazE toxin and Xn-MazF antitoxin were generated, validated and characterized for protein - RNA interaction analysis. Further biological and cellular functions of Xn-MazF toxin were also predicted. Molecular dynamics simulations of 50ns for Xn-MazF toxin complexed with nucleic acid units (DU, RU, RC, and RU) were performed. The MazF toxin and complete MazEF operon were endogenously expressed and monitored for the killing of Escherichia coli host cells under arabinose induced tightly regulated system. Results: Upon induction, E. coli expressing toxin showed rapid killing within four hours and attained up to 65% growth inhibition, while the expression of the entire operon did not show significant killing. The observation suggests that the Xn-mazEF TA system control transcriptional regulation in X. nematophila and helps to manage stress or cause toxicity leading to programmed death of cells. Conclusion: The study provides insights into structural and functional features of novel toxin, XnMazF and provides an initial inference on control of X. nematophila growth regulated by TA systems.


2020 ◽  
Author(s):  
Avik Sotira Scientific

UNSTRUCTURED Coronavirus disease 2019 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a virus known as SARS-Coronavirus 2 (SARS-CoV2). Without a targeted-medicine, this disease has been causing a massive humanitarian crisis not only in terms of mortality, but also imposing a lasting damage to social life and economic progress of humankind. Therefore, an immediate therapeutic strategy needs to be intervened to mitigate this global crisis. Here, we report a novel KepTide™ (Knock-End Peptide) therapy that nullifies SARS-CoV2 infection. SARS-CoV2 employs its surface glycoprotein “spike” (S-glycoprotein) to interact with angiotensin converting enzyme-2 (ACE-2) receptor for its infection in host cells. Based on our in-silico-based homology modeling study validated with a recent X-ray crystallographic structure (PDB ID:6M0J), we have identified that a conserved motif of S-glycoprotein that intimately engages multiple hydrogen-bond (H-bond) interactions with ACE-2 enzyme. Accordingly, we designed a peptide, termed as ACIS (ACE-2 Inhibitory motif of Spike), that displayed significant affinity towards ACE-2 enzyme as confirmed by biochemical assays such as BLItz and fluorescence polarization assays. Interestingly, more than one biochemical modifications were adopted in ACIS in order to enhance the inhibitory action of ACIS and hence called as KEpTide™. Consequently, a monolayer invasion assay, plaque assay and dual immunofluorescence analysis further revealed that KEpTide™ efficiently mitigated the infection of SARS-CoV2 in vitro in VERO E6 cells. Finally, evaluating the relative abundance of ACIS in lungs and the potential side-effects in vivo in mice, our current study discovers a novel KepTide™ therapy that is safe, stable, and robust to attenuate the infection of SARS-CoV2 virus if administered intranasally. INTERNATIONAL REGISTERED REPORT RR2-https://doi.org/10.1101/2020.10.13.337584


1987 ◽  
Vol 5 (2) ◽  
pp. 292-298 ◽  
Author(s):  
R P Warrell ◽  
N W Alcock ◽  
R S Bockman

Bone metastases are a major source of morbidity in patients with cancer. Previously, we found that gallium nitrate was a highly effective treatment for cancer-related hypercalcemia. Laboratory studies have shown that this drug inhibits bone resorption in vitro and that short-term treatment in vivo increases the calcium content of bone. We evaluated the clinical effects of gallium nitrate on biochemical parameters of increased bone turnover in 22 patients with bone metastases. Treatment with gallium nitrate for five to seven days caused a median reduction in 24-hour urinary calcium excretion of 66% relative to baseline measurements (P less than .01). Hydroxyproline (OHP) excretion was also significantly reduced (P less than .01). The greatest reduction in hydroxyprolinuria occurred in patients with high baseline excretion. Ionized serum calcium and serum phosphorous declined significantly after treatment (P less than .01 for each). Serum immunoreactive parathyroid hormone (PTH) increased significantly (P less than .01), as did serum levels of 1,25 (OH)2-vitamin D3 (P less than .05). Urinary phosphorous excretion and serum levels of 25-OH-vitamin D3 were not significantly changed. No major toxic reactions occurred as a result of this treatment. These results indicate that gallium nitrate significantly reduces biochemical parameters associated with accelerated bone turnover and that this agent may be useful for preventing pathologic conditions associated with bone metastases.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 437
Author(s):  
Dean Gilham ◽  
Audrey L. Smith ◽  
Li Fu ◽  
Dalia Y. Moore ◽  
Abenaya Muralidharan ◽  
...  

Effective therapeutics are urgently needed to counter infection and improve outcomes for patients suffering from COVID-19 and to combat this pandemic. Manipulation of epigenetic machinery to influence viral infectivity of host cells is a relatively unexplored area. The bromodomain and extraterminal (BET) family of epigenetic readers have been reported to modulate SARS-CoV-2 infection. Herein, we demonstrate apabetalone, the most clinical advanced BET inhibitor, downregulates expression of cell surface receptors involved in SARS-CoV-2 entry, including angiotensin-converting enzyme 2 (ACE2) and dipeptidyl-peptidase 4 (DPP4 or CD26) in SARS-CoV-2 permissive cells. Moreover, we show that apabetalone inhibits SARS-CoV-2 infection in vitro to levels comparable to those of antiviral agents. Taken together, our study supports further evaluation of apabetalone to treat COVID-19, either alone or in combination with emerging therapeutics.


Sign in / Sign up

Export Citation Format

Share Document