Conjugated Nanohoops with Dibenzo[a,e]pentalenes as Non-alternant and Antiaromatic π-Systems

Synlett ◽  
2022 ◽  
Author(s):  
Birgit Esser ◽  
Jan S Wössner ◽  
Mathias Hermann

Conjugated nanohoops are excellent candidates to study structure-property relationships, as optoelectronic materials and as hosts for supramolecular chemistry. While carbon nanohoops containing aromatics are well studied, antiaromatic units had not been incorporated until recently by our group using dibenzo[a,e]pentalene (DBP). The non-alternant electronic character of the DBP units significantly influences the optoelectronic properties of such nanohoops. We herein summarize our synthetic strategies to DBP-containing nanohoops, their structural and electronic properties, chirality and host-guest chemistry. We demonstrate how incorporating antiaromatic units leads to unique properties and opens new synthetic avenues, making such nanohoops attractive as potential electronic materials.

Author(s):  
Jianglin Wu ◽  
Yao Chen ◽  
Jueshan Liu ◽  
Zhenguo Pang ◽  
Guoping Li ◽  
...  

Understanding structure−property relationships in antiaromatic molecules is crucial for controlling their electronic properties and designing new organic optoelectronic materials. Here we report the design, synthesis, and characterization of three new...


2020 ◽  
Author(s):  
Wenda Shi ◽  
Francesco Salerno ◽  
Alejandro Santana-Bonilla ◽  
Matthew Ward ◽  
Xueyan Hou ◽  
...  

<p>Solubilized fullerene derivatives have revolutionised the development of organic photovoltaic devices, acting as excellent electron acceptors. The addition of solubilizing addends to the fullerene cage results in a large number of isomers, which are generally employed as isomeric mixtures. Moreover, a significant number of these isomers are chiral, which further adds to the isomeric complexity. The opportunities presented by single isomer, and particularly single enantiomer, fullerenes in organic electronic materials and devices are poorly understood. Here we separate 10 pairs of enantiomers from the 19 structural isomers of bis[60]PCBM, using them to elucidate important chiroptical structure-property relationships and demonstrating their application to a single enantiomer circularly polarized (CP) light detecting device. We find that larger chiroptical responses occur through inherent chirality of the fullerene cage and particularly through transitions with low CT character. When used in a single enantiomer organic field-effect transistor device, we demonstrate the potential to discriminate CP light with a fast light response time and with a very high photocurrent dissymmetry factor (<i>g<sub>ph</sub></i> = ±1.35). Our study thus provides key strategies to design fullerenes with large chiroptical responses for use as single enantiomer components of organic electronic devices. We anticipate that our data will position chiral fullerenes as an exciting material class for the growing field of chiral electronic technologies.</p>


1998 ◽  
Vol 547 ◽  
Author(s):  
Arnold M. Guloy ◽  
Zhihong Xu

AbstractStudies have shown that complex Zintl phases exhibit a rich diversity of crystal structures. These have also revealed a remarkable success of the Zintl concept in rationalizing stoichiometry, crystal structure and chemical bonding of many main group intermetallics. Still there are unresolved questions about the usefulness of the concept in explaining structure-property relationships in intermetallics near the Zintl border, and as a rational tool in designing new materials. Limitations of the concept are represented by violations often associated with “electron-deficient” phases that contain Group 13 metalloids. Recent investigations on “electron-deficient” Zintl phases containing post transition metals have led to the synthesis of a number of novel inorganic-intermetallic π-systems. Since unique structures and properties are already apparent in normal Zintl phases, it is anticipated that the exploratory synthesis and characterization of conjugated and multiple-bonded inorganic systems will produce not only unusual crystal chemistry but interesting physical properties as well. We report on new complex Zintl phases that include the semiconducting SrCa2In2Ge - which features [In2Ge]6- chains and represents a novel inorganic conjugated π-system analogous to a polyallyl chain with In-In double bonds, and Ca5In9Sn6 - which contains In trimers, [In3]5- analogous and isoelectronic with the aromatic cyclopropenium cation, [C3H3]+. These unusual materials, Zintl π-systems, represent a promising class of electronic materials with a range of potential applications.


Synthesis ◽  
2020 ◽  
Author(s):  
Zheng Duan ◽  
Lili Wang ◽  
Juan Ma ◽  
Erbing Si

AbstractThis review summarizes recent research on the molecular design, optical, and electronic properties of annulated borepins, silepins, and phosphepins, with emphasis on their structure–property relationships at the molecular level.1 Introduction2 Borepins3 Silepins4 Phosphepins5 Summary and Outlook


2015 ◽  
Vol 3 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Massimo Zambianchi ◽  
Laura Favaretto ◽  
Margherita Durso ◽  
Cristian Bettini ◽  
Alberto Zanelli ◽  
...  

We report the synthesis, structure-property relationships investigation of three new polymorphic 2,3-thieno(bis)imide molecular materials (NTE, NTI and NTA).


2019 ◽  
Vol 21 (48) ◽  
pp. 26420-26429 ◽  
Author(s):  
Thomas M. Cooper ◽  
Joy E. Haley ◽  
Douglas M. Krein ◽  
Aaron R. Burke ◽  
David J. Stewart ◽  
...  

Ligand end cap X determines triplet state behavior.


2013 ◽  
Vol 1550 ◽  
Author(s):  
Anuja Datta ◽  
Pritish Mukherjee

ABSTRACTWe report on the fabrication of various high quality GaS nanostructures (angular nanobelts, nanowedges and nanotubes) and In2S3 nanostructures (tapered nanorods, nanobelts and nanowires) by catalyst assisted thermal evaporation process. The morphology and structures of the products were controlled by temperature and position of the substrates with respect to the source material. The morphologies of GaS and In2S3 nanostructures were examined by X-ray diffraction (XRD), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), and energy dispersive spectroscopy (EDS). The optical and electronic properties of the synthesized materials were investigated in order to obtain a better fundamental understanding of the structure-property relationships in these materials which can be extended to other layered sulfide materials systems.


Author(s):  
Evgeny Gerber ◽  
Anna Yu. Romanchuk ◽  
Stephan Weiss ◽  
Stephen Bauters ◽  
Bianca Schacherl ◽  
...  

We show that the structural and electronic properties of UO2 NPs (2–3 nm) are similar to those of bulk UO2 under inert conditions, with U(iv) as the dominating oxidation state, though NPs oxidize with time and under the X-ray beam.


Sign in / Sign up

Export Citation Format

Share Document