Impact of Electronic Effects on the Nucleofugality of Leaving Groups

Synthesis ◽  
2017 ◽  
Vol 49 (15) ◽  
pp. 3422-3432 ◽  
Author(s):  
Bernard Denegri ◽  
Mirela Matić ◽  
Olga Kronja

A short review of the development of nucleofugality and electrofugality scales based on solvolysis rates of benzhydryl derivatives is presented. Accordingly, the rate of the heterolytic step in the SN1 displacement reaction and the leaving group ability (nucleofugality) in a given solvent are related with the special linear free-energy relationship (LFER) equation: log k = s f (N f + E f). The impact of electronic effects in the leaving group (nucleofuge) on the overall SN1 reactivity of the substrate is given. The importance of inductivity, resonance, polarity and field effects in the leaving group moiety in the transition state is analyzed. Also, the effect of the negative hyperconjugation and the influence of other electronic effects in the leaving group on the height of the reaction intrinsic barrier are considered.1 Introduction2 Development of the Nucleofugality Scale3 Inductive and Resonance Effects4 Negative Hyperconjugation5 Intrinsic Barrier6 Conclusions

2003 ◽  
Vol 68 (7) ◽  
pp. 525-534 ◽  
Author(s):  
Natasa Valentic ◽  
Gordana Uscumlic

The principle of linear free energy relationships was applied to the 1H chemical shifts of the ?-vinyl proton atoms of 3-methylene-2-substituted-1,4-pentadienes. The correlations of the proton chemical shifts with Swain and Lupton substituent parameters provide a mutually consistent picture of the electronic effects in these compounds. The overall pattern of proton chemical shifts can be largely accounted for by a model of substituent effects based on field, resonance and ? polarization effects. Owing to the particular geometric arrangement of the vinyl group in 3-methylene-2-substituted-1,4-pentadienes, the ?-vinyl protons HB and HC have different sensitivities to polar and resonance effects. The different sensitivities of the 1H chemical shifts to resonance effects reveals some effects not predicted by the model outlined above. Evidence is presented that demonstrates that both the 1H and 13C chemical shifts for these compounds reflect their ground-state charge densities.


2018 ◽  
Author(s):  
Bert van Loo ◽  
Ryan Berry ◽  
Usa Boonyuen ◽  
Mark F. Mohamed ◽  
Marko Golicnik ◽  
...  

ABSTRACTPseudomonas aeruginosaarylsulfatase (PAS) hydrolyses sulfate and, promiscuously, phosphate monoesters. Enzyme-catalyzed sulfate transfer is crucial to a wide variety of biological processes, but detailed studies of the mechanistic contributions to its catalysis are lacking. We present an investigation based on linear free energy relationships (LFERs) and kinetic isotope effects (KIEs) of PAS and active site mutants that suggest a key role for leaving group (LG) stabilization. In LFERs wild type PAS has a much less negative Br0nsted coefficient (βleaving groupobs-Enz= −0.33) than the uncatalyzed reaction (βleavingroupobs= −1.81). This situation is diminished when cationic active site groups are exchanged for alanine. The considerable degree of bond breaking during the TS is evidenced by an18ObridgeKIE of 1.0088. LFER and KIE data for several active site mutants point to leaving group stabilization by active-site lysine K375, in cooperation with histidine H211.15N KIEs combined with an increased sensitivity to leaving group ability of the sulfatase activity in neat D2O (Δβleaving groupH-D= +0.06) suggest that the mechanism for S-Obridgebond fission shifts, with decreasing leaving group ability, from charge compensation via Lewis acid interactions towards direct proton donation.18OnonbridgeKIEs indicate that the TS for PAS-catalyzed sulfate monoester hydrolysis has a significantly more associative character compared to the uncatalyzed reaction, while PAS-catalyzed phosphate monoester hydrolysis does not show this shift. This difference in enzyme-catalyzed TSs appears to be the major factor favoring specificity toward sulfate over phosphate in this promiscuous hydrolase, since other features are either too similar (uncatalyzed TS) or inherently favor phosphate (charge).


1992 ◽  
Vol 286 (3) ◽  
pp. 721-727 ◽  
Author(s):  
J D McCarter ◽  
M J Adam ◽  
S G Withers

Kinetic parameters for the hydrolysis of a series of deoxy and deoxyfluoro analogues of 2′,4′-dinitrophenyl beta-D-galactopyranoside by Escherichia coli (lacZ) beta-galactosidase have been determined and rates found to be two to nine orders of magnitude lower than that for the parent compound. These large rate reductions result primarily from the loss of transition-state binding interactions due to the replacement of sugar hydroxy groups, and such interactions are estimated to contribute at least 16.7 kJ (4 kcal).mol-1 to binding at the 3, 4 and 6 positions and more than 33.5 kJ (8 kcal).mol-1 at the 2 position. The existence of a linear free-energy relationship between log(kcat./Km) for these compounds and the logarithm of the first-order rate constant for their spontaneous hydrolysis demonstrates that electronic effects are also important and provides direct evidence for oxocarbonium ion character in the enzymic transition state. A covalent intermediate which turns over only extremely slowly (t1/2 = 45 h) accumulates during hydrolysis of the 2-deoxyfluorogalactoside, and kinetic parameters for its formation have been determined. This intermediate is nonetheless catalytically competent, since it re-activates much more rapidly in the presence of the transglycosylation acceptors methanol or glucose, thereby providing support for the notion of a covalent intermediate during hydrolysis of the parent substrates.


2003 ◽  
Vol 68 (2) ◽  
pp. 67-76 ◽  
Author(s):  
Natasa Valentic ◽  
Zeljko Vitnik ◽  
Sergei Kozhushkov ◽  
Majere de ◽  
Gordana Uscumlic ◽  
...  

The principles of linear free energy relationships were applied to the 13C substituent chemical shifts (SCS) of the carbon atoms in the unsaturated chain of 3-methylene-4-substituted-1,4-pentadienes. Correlations of the SCS with the substituent parameters of Swain and Lupton provide a mutually consistent picture of the electronic effects in these compounds. The pattern of the electronic effects can be fully rationalized by a model based on the direct transmission of substituent effects through-space (direct through-space field effects), and via conjugative interactions (resonance effects), or by substituent-induced polarization of the ?-system in the unsaturated chain (?-polarization effect). Semi-empirical MNDO-PM3 calculations suggest the s-cis conformation of 3-methylene-4-substituted-1,4-pentadienes as the one with minimal heat of formation.


2000 ◽  
Vol 72 (9) ◽  
pp. 1685-1689 ◽  
Author(s):  
Junji Ichikawa

By using the properties of fluorine such as electronic effects and leaving-group ability, two types of ring-forming reactions have been achieved starting from fluoroolefins: (i) fluorinated vinyl ketones with a vinyl and/or an aryl group, which undergo fluorine-directed and/or -activated Nazarov, Friedel-Crafts, and tandem cyclizations in their combination to construct highly functionalized and fused ring systems and (ii) gem-difluoroolefins bearing a nucleophilic center on the carbon δ to the flourines undergo intramolecular substitution for the fluorine via "anti-Baldwin" 5-endo-trig closures leading to ring-fluorinated heterocycles. Throughout these reactions, fluorines function as an activator of the substrates and a controller over the reaction pathways.


1989 ◽  
Vol 67 (9) ◽  
pp. 1457-1467 ◽  
Author(s):  
Peter James Smith ◽  
Md. Amin

To investigate the effect of the leaving group on the elimination reaction of 1-phenylethylammonium ions with sodium ethoxide in ethanol at 60 °C, the reaction of seven different quaternary ammonium salts and their β-deuterated analogues with trimethylamine, N-methylpiperidine, N-methyldiethylamine, triethylamine, N,N-dimethylbenzylamine, tripropylamine, and N,N-diethylbenzylamine as leaving groups has been studied. In all cases the elimination, which was shown to proceed via the concerted E2 process, was accompanied by competing substitution reactions. Although a significant dependence of the rate of the elimination process on the nature of the leaving group was noted, there was not any linear correlation with the basicity of the amine leaving group. The primary hydrogen–deuterium kinetic isotope effect for the elimination process, (kH/kD)E, was found to increase initially with an increase of reaction rate, [Formula: see text] for substrates containing the leaving groups trimethylamine, N-methylpiperidine, N-methyldiethylamine, triethylamine, and N,N-dimethylbenzylamine; i.e., (kH/kD)E = 5.03, 5.26, 5.40, 5.83, and 5.85, respectively. A further increase in rate, using substrates with tripropylamine and N,N-diethylbenzylamine as leaving groups resulted in a decrease of the magnitude of the hydrogen–deuterium isotope effect; i. e., (kH/kD)E = 5.42 and 4.67, respectively. It is concluded that steric effects mainly determine leaving group ability. As well, it is concluded that the leaving group ability of the amine determines the structure of the E2 transition state. For the reaction of the poorer leaving groups, trimethylamine, N-methylpiperidine, and N-methyldiethylamine, the proton is morethan one-half transferred at the transition state while for reaction involving the two best leaving groups, tripropylamine and N,N-diethylbenzylamine, the Cβ—H bond is lessthan one-half broken at the transition state. The conclusions are considered in the light of the More O'Ferrall – Jencks potential energy surface diagram. Keywords: elimination mechanism, transition state, isotope effects, leaving group, quaternary salts.


1980 ◽  
Vol 45 (8) ◽  
pp. 2171-2178
Author(s):  
Jiří Závada ◽  
Magdalena Pánková

Approximate rates of the competing syn- and anti-pathways have been determined in t-C4H9OK-t-C4H9OH promoted elimination from two homologous series of tosylates: I-OTs trans-III (R = H, CH3, C2H5, n-C3H7, i-C3H7, t-C4H9) and II-OTs trans-IV (R = CH3, C2H5, n-C3H7, i-C3H7, t-C4H9). A comparison has been made with rates of the same processes in the (+) elimination of the corresponding trimethylammonium salts I-N(CH3)3 trans-III and (+) II-N(CH3)3 trans-IV. The title effect is demonstrated by a comparative analysis of the rate patterns obtained for the two leaving groups.


Sign in / Sign up

Export Citation Format

Share Document