MONOCLONAL ANTIBODIES OF THE IgM AND IgG CLASS SPECIFIC FOR CROSSLINKED FIBRIN DEGRADATION PRODUCTS
Monoclonal antibodies (mabs) to crosslinked fibrin degradation products (XL-FDP) having the general formula D/Y[X]nY/D (known as X-oligomer) and D-D (known as D dimer) have been raised in balb/C mice by both a novel mtrasplenic and a conventional subcutaneous route of immunisation and by combinations of both these procedures. Mabs to X-oligomers (NIBn 52 and NIBn 123) obtained by an intrasplenic procedure have been demonstrated to crossreact only with X-oligomer in a 2-site ELISA procedure and not with D dimer or whole fibrinogen and have been shown to be of value m the examination of clinical material obtained from patients with various types of thrombosis and have also been useful in monitoring the efficacy of thrombolytic therapy. The X-oligomer mabs are immunoglobulins of the M class. It was demonstrated that their unique specificity for conformational epitopes on the large X-oligomer fragments does not reside in the IgM structure since alterative immunisation procedures have been used to generate mabs of the IgG class which have the same specificity. Using immunoglobulin class switching in culture rather than during immunisation was suggested by certain cell lines which produced both IgM and IgG specific for X-oligomer. This latter point needs rigorous validation.Immunoglobulin G type mabs to highly purified D dimer were raised by conventional subcutaneous immunisation of balb/C mice. One of these, NIBn-11, was found to crossreact with PVC-immobilised X-oligomer and D dimer but not with fibrinogen. However NIBn-11 did not bind to D dimer in a 2-site ELISA procedure while crossreactmg quite avidly with X-oligomer. This suggests that the D dimer epitope to which NIBn-11 is directed is expressed in some conformations and not m others and that these conformations are always expressed in the complex X-oligomer group of fragments. These mabs, whilst of value in measuring certain unique fibrin fragments m plasma, are useful in the epitope mapping of fibrinogen/fibrin and their plasmm-mediated