Lack of Stability of Aggregates after Thrombin-Induced Reaggregation of Thrombin-Degranulated Platelets

1992 ◽  
Vol 67 (04) ◽  
pp. 453-457 ◽  
Author(s):  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Dennis W Perry ◽  
J Fraser Mustard ◽  
Marco Cattaneo

SummaryThe stability of platelet aggregates is influenced by the extent of the release of granule contents; if release is extensive and aggregation is prolonged, deaggregation is difficult to achieve. The relative importance of the contributions of released substances to aggregate stability are not known, although stable thrombin-induced aggregates form in platelet-rich plasma from patients with barely detectable plasma or platelet fibrinogen, and ADP stabilizes thrombin-induced aggregates of platelets from patients with delta storage pool deficiency which otherwise deaggregate more readily than normal platelets. We degranulated platelets with thrombin (0.9 U/ml caused greater than 90% loss of delta and alpha granule contents) and recovered them as individual platelets in fresh medium. The degranulated platelets were reaggregated by thrombin (2 U/ml). To prevent continuing effects of thrombin, FPRCH2C1 was added when thrombin-induced aggregation of thrombin-degranulated platelets reached its maximum. EDTA (5 mM) or EGTA (5 mM) added at maximum aggregation did not deaggregate these platelets, indicating that the stability of these aggregates does not depend on Ca2+ in the medium. Whereas with control platelets a combination of PGE1 (10 μM) and chymotrypsin(10 U/ml) was required for deaggregation, with thrombin-degranulated platelets either PGE1 or chymo-trypsin alone caused extensive deaggregation. The rate and extent of deaggregation of thrombin-degranulated platelets by a combination of PGE1 and chymotrypsin was greater than with control platelets.Electron microscope gold immunocytochemistry using antihuman fibrinogen IgG, anti-von Willebrand factor and anti-fibronectin showed a) that fibrinogen in the vacuoles of degranulated platelets was visible at focal points of platelet contact in the aggregates, but that large areas of platelet contact had no fibrinogen detectable between them; and b) in comparison to fibrinogen, little fibronectin or von Willebrand factor (vWf) was detectable in the platelets.Since the linkages between thrombin-degranulated platelets reaggregated by thrombin can be disrupted either by raising cAMP (thus making glycoprotein IIb/IIIa unavailable) or by proteolysis, these linkages are less stable than those formed between normal platelets. It might therefore be expected that platelets that take part in thrombus formation and then recirculate are likely to form less stable thrombi than platelets that have not released their granule contents.

1993 ◽  
Vol 70 (06) ◽  
pp. 1053-1057 ◽  
Author(s):  
Agnès M Journet ◽  
Simin Saffaripour ◽  
Denisa D Wagner

SummaryBiosynthesis of the adhesive glycoprotein von Willebrand factor (vWf) by endothelial cells results in constitutive secretion of small multimers and storage of the largest multimers in rodshaped granules called Weibel-Palade bodies. This pattern is reproduced by expression of pro-vWf in heterologous cells with a regulated pathway of secretion, that store the recombinant protein in similar elongated granules. In these cells, deletion of the vWf prosequence prevents vWf storage. The prosequence, composed of two homologous domains (D1 and D2), actively participates in vWf multimer formation as well. We expressed deletion mutants lacking either the D1 domain (D2vWf) or the D2 domain (D1vWf) in various cell lines to analyze the relative importance of each domain in vWf muitimerization and storage. Both proteins were secreted efficiently without being retained in the endoplasmic reticulum. Despite this, neither multimerized past the dimer stage and they were not stored. We conclude that several segments of the prosequence are jointly involved in vWf muitimerization and storage.


2001 ◽  
Vol 85 (05) ◽  
pp. 837-844 ◽  
Author(s):  
Angela Bertagna ◽  
Nadia Jahroudi

SummaryIonizing irradiation in patients is proposed to cause thrombus formation. An increase in von Willebrand factor secretion in response to irradiation is a major contributing factor to thrombus formation. We have previously reported that the increased VWF secretion in response to irradiation is mediated at the transcriptional level. The VWF core promoter fragment (sequences –90 to +22) was shown to contain the necessary cis-acting element(s) to mediate the irradiation response of the VWF gene. Here we report that a CCAAT element in the VWF promoter is the cis-acting element necessary for irradiation induction and that the NFY transcription factor interacts with this element. These analyses demonstrate that inhibition of NFY’s interaction with the CCAAT element abolishes the irradiation induction of the VWF promoter. These results provide a novel role for NFY and add this factor to the small list of irradiation-responsive transcription factors. Coimmunoprecipitation experiments demonstrated that NFY is associated with the histone acetylase P/CAF in vivo and that irradiation resulted in an increased association of NFY with coactivator P/CAF. We propose that irradiation induction of the VWF promoter involves a mechanism resulting in increased recruitment of the coactivator P/CAF to the promoter via the NFY transcription factor.


1984 ◽  
Vol 52 (01) ◽  
pp. 057-059 ◽  
Author(s):  
E Dejana ◽  
M Furlan ◽  
B Barbieri ◽  
M B Donati ◽  
E A Beck

SummaryRat platelets do not respond to ristocetin in their own plasma nor do they aggregate in the presence of bovine or porcine factor VIII von Willebrand factor (F VIII R:WF) or human F VIII R:WF in presence of ristocetin. However, rat plasma supports ristocetin induced aggregation of washed human platelets. In this study we report on purification of rat F VIII R:WF from cryoprecipitate. Similarly to porcine or bovine material, purified rat F VIII R:WF induced aggregation of human washed fixed platelets. This effect was enhanced by addition of ristocetin and was not modified by addition of albumin. Rat washed platelets were aggregated by ristocetin in the presence of rat or human F VIII R:WF provided that high concentrations of ristocetin are added in a system essentially free of extraneous proteins. Increasing concentrations of albumin dramatically reduced the ability of ristocetin to aggregate rat platelets while human platelet aggregation by human or rat F VIII R:WF was only moderately affected.These studies show that rat F VIII R:WF can interact with rat and human platelets. The lack of response of rat platelets to ristocetin in their own plasma is most likely due to a low sensitivity of rat platelets to this drug and to an inhibitory activity of plasma proteins on this reaction.


1986 ◽  
Vol 55 (03) ◽  
pp. 338-341 ◽  
Author(s):  
H Takahashi ◽  
W Tatewaki ◽  
M Hanano ◽  
R Nagayama ◽  
A Shibata

SummaryPlatelet-type von Willebrand’s disease (vWD) is a bleeding disorder characterized by a heightened interaction between platelets and von Willebrand factor (vWF) as the result of an intrinsic platelet abnormality (probably in GPIb). Platelet aggregability was nearly normal in response to thrombin, wheat germ agglutinin and Ricinus communis agglutinin in this disorder. Unmodified platelets showed no aggregation upon the addition of peanut agglutinin. Partially purified human vWF induced little aggregation of washed patient platelets, but the aggregation was greatly enhanced in the presence of plasma devoid of vWF. Monoclonal antibodies directed against GPIb and GPIIb/IIIa as well as EDTA completely inhibited vWF-induced aggregation. These results indicate that human vWF induces aggregation of platelet-type vWD platelets in the presence of divalent cations and some plasma cofactor(s), and that both GPIb and GPIIb/IIIa are involved in this aggregation.


2020 ◽  
Vol 120 (03) ◽  
pp. 466-476
Author(s):  
Sibgha Tahir ◽  
Andreas H. Wagner ◽  
Steffen Dietzel ◽  
Hanna Mannell ◽  
Joachim Pircher ◽  
...  

Abstract Background von Willebrand factor (vWF) plays an important role in platelet activation. CD40–CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels in vivo, whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes. Methods and Results The role of CD40L in the formation of beaded platelet strings reflecting their adhesion to ultralarge vWF fibers (ULVWF) was analyzed in the murine cremaster microcirculation in vivo. Expression of CD40 and vWF was studied by immunohistochemistry in isolated and fixed cremasters. Microvascular CD40 was only expressed under inflammatory conditions and exclusively in venous endothelium. We demonstrate that CD40L treatment augmented the number of platelet strings, reflecting ULVWF multimer formation exclusively in venules and small veins. In ADAMTS13 knockout mice, the number of platelet strings further increased to a significant extent. As a consequence extensive thrombus formation was induced in venules of ADAMTS13 knockout mice. In addition, circulating leukocytes showed primary and rapid adherence to these platelet strings followed by preferential extravasation in these areas. Conclusion CD40L is an important stimulus of microvascular endothelial ULVWF release, subsequent platelet string formation and leukocyte extravasation but only in venous vessels under inflammatory conditions. Here, the lack of ADAMTS13 leads to severe thrombus formation. The results identify CD40 expression and ADAMTS13 activity as important targets to prevent microvascular inflammatory thrombosis.


1994 ◽  
Vol 86 (2) ◽  
pp. 327-332 ◽  
Author(s):  
Edith Fressinaud ◽  
Augusto B. Federici ◽  
Giancarlo Castaman ◽  
Chantal Rothschild ◽  
Francesco Rodeghiero ◽  
...  

1976 ◽  
Vol 230 (5) ◽  
pp. 1406-1410 ◽  
Author(s):  
RA Grant ◽  
MB Zucker ◽  
J McPherson

Human plasma von Willebrand factor (vWF) plus the antibiotic ristocetin, or bovine or porcine vWF alone, agglutinates platelets in either normal human ethylenediaminetetraacetate (EDTA)-treated citrated platelet-rich plasma (PRP) or citrated PRP from patients with the congenital platelet defect thrombasthenia. The prior addition of 1-10 muM ADP, which causes platelet shape change but not aggregation under these conditions, inhibited vWF-mediated agglutination. Inhibition was prevented by 200 muM ATP. Addition of ADP caused prompt reversal of established vWF-mediated agglutination, which resumed when the ADP was enzymatically removed. EDTA-treated, Formalin-fixed, washed normal platelets also underwent vWF-mediated agglutination. ADP was inhibitory only when added before fixation. Epinephrine (40 muM), prostaglandin E1 (7 muM), or serotonin (2 muM) added before fixation caused slight to moderate inhibition but always less than ADP. Platelets from blood chilled before fixation were fully active. Platelets fixed in freshly prepared PRP did not agglutinate as well as those fixed after incubation of PRP, probably because centrifugation exposes the platelets to ADP. It concluded that ADP causes a reversible decrease in the accessibility of the membrane receptor to vWF.


Blood ◽  
1984 ◽  
Vol 64 (6) ◽  
pp. 1254-1262 ◽  
Author(s):  
H Takahashi ◽  
M Handa ◽  
K Watanabe ◽  
Y Ando ◽  
R Nagayama ◽  
...  

Abstract We studied four patients who showed aggregation of platelets in platelet-rich plasma at lower concentrations of ristocetin than those required for normal platelet-rich plasma and who demonstrated an increased capacity of the platelets to bind normal von Willebrand factor. The four patients were from two Japanese families. Platelets from one family aggregated spontaneously in vitro, and platelets from both families aggregated upon the addition of normal plasma and cryoprecipitate, in the absence of ristocetin or other agonists. Analysis of the multimeric composition of von Willebrand factor by sodium dodecyl sulfate-agarose gel electrophoresis revealed a decrease in large multimers or a decrease in both large and intermediate multimers in plasma, but normal multimers in platelets. 1-Deamino-[8-D- arginine]-vasopressin caused by an immediate appearance of larger multimers in plasma, followed by the rapid disappearance of these multimers from circulating plasma. Analysis of platelet membrane glycoproteins from the patients showed that there were two distinct bands in the glycoprotein I region; one migrated in a slower region and the other in a faster region than normal glycoprotein Ib. We suggest that the platelet receptor abnormality in these patients is related to this abnormality of glycoprotein Ib.


Blood ◽  
1998 ◽  
Vol 91 (8) ◽  
pp. 2810-2817 ◽  
Author(s):  
Marc F. Hoylaerts ◽  
Chantal Thys ◽  
Jef Arnout ◽  
Jos Vermylen

A patient with a history of recurrent late fetal loss associated with multiple placental infarcts and cerebrovascular ischemia at the age of 36, followed a year later by a myocardial infarction, was referred for further investigation. Coronary angiography was normal. Antinuclear factor, lupus anticoagulant, anticardiolipin antibodies, and other thrombophilia parameters were negative, but there was moderate hyperthyroidism with positive thyroid peroxidase antibodies. Platelet numbers and von Willebrand factor (vWF) were normal. Her platelets showed spontaneous aggregation that disappeared with aspirin intake. However, aggregation still was induced by low levels of ristocetin (0.3 to 0.5 mg/mL). The low-dose ristocetin aggregation in patient platelet-rich plasma (PRP) was completely blocked by neutralizing antiglycoprotein Ib (GPIb) and anti-vWF antibodies. The monoclonal anti-FcγRII receptor antibody IV.3 inhibited partly, which suggests that PRP aggregation by low-dose ristocetin was elicited by vWF-immunoglobulin (Ig) complexes. Upon addition to washed human platelets, with vWF (10 μg/mL), purified patient Igs dose-dependently enhanced ristocetin (0.15 mg/mL)-induced aggregation between 0 and 500 μg/mL, an effect that disappeared again above 1 mg/mL. Aggregation was dependent on the vWF concentration and was blocked by IV.3 or neutralizing anti-GPIb or anti-vWF antibodies. The spontaneous aggregation of normal platelets resuspended in patient plasma could be inhibited totally by IV.3 and partially by neutralizing anti-GPIb or anti-vWF antibodies. Perfusion with normal anticoagulated blood, enriched with 10% of control or patient plasma, over surfaces coated with vWF showed increased platelet adhesion and activation in the presence of patient antibodies. Treatment of the patient with the antithyroid drug thiamazol and temporary corticosteroids, aspirin, and ticlopidine did not correct the platelet hypersensitivity to ristocetin. These observations suggest that some autoantibodies to vWF may both enhance vWF binding to platelets and cause platelet activation through binding to the FcγRII receptor, and thereby may be responsible for a new form of antibody-mediated thrombosis.


Sign in / Sign up

Export Citation Format

Share Document