Kinetic Study of the Effect of Heparin on the Amidase Activity of Trypsin, Plasmin and Urokinase

1983 ◽  
Vol 49 (03) ◽  
pp. 199-203 ◽  
Author(s):  
V M Yomtova ◽  
N A Stambolieva ◽  
B M Blagoev

SummaryIt was found that the effect of heparin on the amidase activity of urokinase (E C 3.4.21.31), plasmin (E C 3.4.21.7) and trypsin (E C 3.4.21.4) depended on the substrate used. No effect of heparin on the amidase activity of urokinase and trypsin was observed when Pyro Glu-Gly-Arg-p-nitroanilide (S-2444) and α-N-acetyl-L-lysine-p-nitroanilide (ALNA) were used as substrates. Heparin acted as a uncompetitive inhibitor of trypsin (Ki = 1.2×10-6 M), plasmin (Ki = 4.9×10-6 M) and urokinase (Ki = l.0×10-7 M) when Bz-Phe-Val-Arg-p-nitroanilide (S-2160), H-D-Val-Leu-Lys-p-nitroanilide (S-2251) and plasminogen, respectively, were used as substrates. These results, as well as the data obtained by studying the effect of the simultaneous presence of heparin and competitive inhibitors suggest that although heparin is not bound at the active center of these enzymes, it may influence the effectivity of catalysis.

1988 ◽  
Vol 233 (1273) ◽  
pp. 461-475 ◽  

The question is raised as to whether competitive inhibitors should block responses of tissue to nerve-released neurotransmitter to the same extent as they block equivalent responses to exogenous agonist. From a simple dynamic model of synaptic events, which takes into account non-constancy of transmitter concentration in space and time, it is deduced that equal blockade of responses to nerve-released and exogenous transmitter substance will occur if: (i) there are locally many more receptor molecules than transmitter molecules; (ii) the active agonist–receptor complex, A n R, has n = 1 ; and (iii) tissue response is insensitive to spatial or temporal inhomogeneity of AR. In such a case there will also be equal sensitivity of responses to other modes of inhibition: irreversible competitive, uncompetitive, and non-competitive. Equal blockade of responses to equi-effective endogenous and exogenous agonist will also occur if nerve stimulation gives rise to a steady uniform concentration of agonist, so that equilibrium kinetics are applicable. When n > 1 and/or when tissue responses reflect local peak A n R, response to nerve-released transmitter will be relatively insensitive to receptor blockade by a competitive inhibitor. The same is true for irreversible competitive blockade or for modulation of receptor density. However, an uncompetitive inhibitor (e. g. a ‘channel blocker’) may be more effective against nerve-released agonist than against exogenous agonist.


1958 ◽  
Vol 42 (1) ◽  
pp. 49-68 ◽  
Author(s):  
M. Castañeda-Agulló ◽  
Luz M. del Castillo

The behavior of α-chymotrypsin has been studied in the simultaneous presence of two different substrates, each present in the reaction mixture at its saturation level. Mixtures of two esters were hydrolyzed at rates intermediate between the rates of hydrolysis of each ester when present alone, suggesting, in this case, competitive hydrolysis. In contrast, the rates of hydrolysis in mixtures of casein with gelatin or of either protein with an ester were equal to the sum of the rates of hydrolysis of the separate substrates, indicating in these cases independent hydrolysis. The activity of the α-chymotrypsin preparation used could not be attributed to contamination with other enzymes. Studies of the effect of soy bean inhibitor on chymotrypsin indicate that the mechanism of inhibition with protein substrates differs from that when esters are used, providing further evidence that α-chymotrypsin reacts differently with esters and proteins. These results indicate that if chymotrypsin forms specific complexes with its substrates, it must possess at least three distinct active sites. However there is independent chemical evidence that the proteolytic and esterolytic activities of this enzyme reside in the same active center. If this is true, the experimental observations reported here cannot be explained unless it is supposed that this enzyme does not form specific Michaelis complexes with its substrates.


1997 ◽  
Vol 52 (9-10) ◽  
pp. 670-675 ◽  
Author(s):  
Elżbieta Miszczak-Zaborska ◽  
Krystyna Woźniak

Partially purified samples of thymidine phosphorylase were obtained from four preparations of human uterine leiomyomas and uteri using the method of Yoshimura et al. (1990), Biochim. Biophys. Acta 1034, 107-113. Among the studied twelve pyrimidine derivatives, 5- bromouracil. 5-nitrouracil, 5-fluorouracil, 6-aminouracil, 4,6-dihydroxy-5-nitropyrimidine are competitive inhibitors, while allyloxymethylthymine is an uncompetitive inhibitor of thymidine phosphorylase activity. 6-benzyl-2-thiouracil inhibits the activity of the enzyme in a mixed way. The most potent inhibitor of the thymidine phosphorylase activity is 5-bromouracil and uracil the weakest one. Stronger inhibition of these compounds on the activity of thymidine phosphorylase was found in uterine leiomyomas than in uteri


2008 ◽  
Vol 105 (12) ◽  
pp. 601-608
Author(s):  
Seung Min Han ◽  
Dong Joon Min ◽  
Joo Hyun Park ◽  
Jung Ho Park ◽  
Jong Min Park
Keyword(s):  

1979 ◽  
Author(s):  
T Harada ◽  
M Ohki ◽  
M Niwa ◽  
S Iwanaga

Limulus hemocyte lysate contains a proclotting enzyme, which is transformed to the active clotting enzyme in the presence of gram-negative bacterial endotoxins. The clotting enzyme coagulates a clottable protein, named coagulogen, contained also in the lysate. This gelation reaction of the lysate, named Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. We developed a new fluorogenic substrate, Boc-Leu-Gly-Arg-4-methylcoumarin amide, for Limulus clotting enzyme and established an enzymatic assay method for endotoxins, using the substrate. Because the endotoxin mediates the activation of proclotting enzyme in the lysate, the measurement of amidase activity could be applicable for quantitation of the endotoxins. In fact, the amidase activity determined fluorometrically increased by increasing concentration of E. coli 0111: B4 endotoxin added to the lysate, and a linear relationship between the toxin concentration and the activity was observed in the range of 5X10-6to 5xl0-2 µg endotoxin. The method was a fifty times more sensitive than that of the Limulus test and was very reproducible. However, the method was not directly applicable for the assay of endotoxins in circulating blood, as the amidase activity was strongly inhibited by antithrombin III and α2-plasmin inhibitor. Thus, some pretreatment with heat or chloroform on plasma samples before the assay was required.


Sign in / Sign up

Export Citation Format

Share Document