scholarly journals Review of Clinical Research Informatics

2020 ◽  
Vol 29 (01) ◽  
pp. 193-202
Author(s):  
Anthony Solomonides

Objectives: Clinical Research Informatics (CRI) declares its scope in its name, but its content, both in terms of the clinical research it supports—and sometimes initiates—and the methods it has developed over time, reach much further than the name suggests. The goal of this review is to celebrate the extraordinary diversity of activity and of results, not as a prize-giving pageant, but in recognition of the field, the community that both serves and is sustained by it, and of its interdisciplinarity and its international dimension. Methods: Beyond personal awareness of a range of work commensurate with the author’s own research, it is clear that, even with a thorough literature search, a comprehensive review is impossible. Moreover, the field has grown and subdivided to an extent that makes it very hard for one individual to be familiar with every branch or with more than a few branches in any depth. A literature survey was conducted that focused on informatics-related terms in the general biomedical and healthcare literature, and specific concerns (“artificial intelligence”, “data models”, “analytics”, etc.) in the biomedical informatics (BMI) literature. In addition to a selection from the results from these searches, suggestive references within them were also considered. Results: The substantive sections of the paper—Artificial Intelligence, Machine Learning, and “Big Data” Analytics; Common Data Models, Data Quality, and Standards; Phenotyping and Cohort Discovery; Privacy: Deidentification, Distributed Computation, Blockchain; Causal Inference and Real-World Evidence—provide broad coverage of these active research areas, with, no doubt, a bias towards this reviewer’s interests and preferences, landing on a number of papers that stood out in one way or another, or, alternatively, exemplified a particular line of work. Conclusions: CRI is thriving, not only in the familiar major centers of research, but more widely, throughout the world. This is not to pretend that the distribution is uniform, but to highlight the potential for this domain to play a prominent role in supporting progress in medicine, healthcare, and wellbeing everywhere. We conclude with the observation that CRI and its practitioners would make apt stewards of the new medical knowledge that their methods will bring forward.

2018 ◽  
Vol 9 (4) ◽  
pp. 33-51
Author(s):  
Rostom Mennour ◽  
Mohamed Batouche

Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.


Author(s):  
Rostom Mennour ◽  
Mohamed Batouche

Big data analytics and deep learning are nowadays two of the most active research areas in computer science. As the data is becoming bigger and bigger, deep learning has a very important role to play in data analytics, and big data technologies will give it huge opportunities for different sectors. Deep learning brings new challenges especially when it comes to large amounts of data, the volume of datasets has to be processed and managed, also data in various applications come in a streaming way and deep learning approaches have to deal with this kind of applications. In this paper, the authors propose two novel approaches for discriminative deep learning, namely LS-DSN, and StreamDSN that are inspired from the deep stacking network algorithm. Two versions of the gradient descent algorithm were used to train the proposed algorithms. The experiment results have shown that the algorithms gave satisfying accuracy results and scale well when the size of data increases. In addition, StreamDSN algorithm have been applied to classify beats of ECG signals and provided good promising results.


2016 ◽  
Vol 25 (01) ◽  
pp. 211-218 ◽  
Author(s):  
M.G. Kahn ◽  
C. Weng

Summary Objectives: To reflect on the notable events and significant developments in Clinical Research Informatics (CRI) in the year of 2015 and discuss near-term trends impacting CRI. Methods: We selected key publications that highlight not only important recent advances in CRI but also notable events likely to have significant impact on CRI activities over the next few years or longer, and consulted the discussions in relevant scientific communities and an online living textbook for modern clinical trials. We also related the new concepts with old problems to improve the continuity of CRI research. Results: The highlights in CRI in 2015 include the growing adoption of electronic health records (EHR), the rapid development of regional, national, and global clinical data research networks for using EHR data to integrate scalable clinical research with clinical care and generate robust medical evidence. Data quality, integration, and fusion, data access by researchers, study transparency, results reproducibility, and infrastructure sustainability are persistent challenges. Conclusion: The advances in Big Data Analytics and Internet technologies together with the engagement of citizens in sciences are shaping the global clinical research enterprise, which is getting more open and increasingly stakeholder-centered, where stakeholders include patients, clinicians, researchers, and sponsors.


2016 ◽  
Vol 25 (01) ◽  
pp. 219-223
Author(s):  
R. Choquet ◽  
C. Daniel ◽  

Summary Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2015. Method: A bibliographic search using a combination of MeSH and free terms search over PubMed on Clinical Research Informatics (CRI) was performed followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the editorial team was finally organized to conclude on the selection of best papers. Results: Among the 579 returned papers published in the past year in the various areas of Clinical Research Informatics (CRI) - i) methods supporting clinical research, ii) data sharing and interoperability, iii) re-use of healthcare data for research, iv) patient recruitment and engagement, v) data privacy, security and regulatory issues and vi) policy and perspectives - the full review process selected four best papers. The first selected paper evaluates the capability of the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) to support the representation of case report forms (in both the design stage and with patient level data) during a complete clinical study lifecycle. The second selected paper describes a prototype for secondary use of electronic health records data captured in non-standardized text. The third selected paper presents a privacy preserving electronic health record linkage tool and the last selected paper describes how big data use in US relies on access to health information governed by varying and often misunderstood legal requirements and ethical considerations. Conclusions: A major trend in the 2015 publications is the analysis of observational, “nonexperimental” information and the potential biases and confounding factors hidden in the data that will have to be carefully taken into account to validate new predictive models. In addiction, researchers have to understand complicated and sometimes contradictory legal requirements and to consider ethical obligations in order to balance privacy and promoting discovery.


2018 ◽  
Vol 27 (01) ◽  
pp. 177-183 ◽  
Author(s):  
Christel Daniel ◽  
Dipak Kalra ◽  

Objectives: To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2017. Method: A bibliographic search using a combination of MeSH descriptors and free terms on CRI was performed using PubMed, followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the editorial team was organized to finally conclude on the selection of best papers. Results: Among the 741 returned papers published in 2017 in the various areas of CRI, the full review process selected five best papers. The first best paper reports on the implementation of consent management considering patient preferences for the use of de-identified data of electronic health records for research. The second best paper describes an approach using natural language processing to extract symptoms of severe mental illness from clinical text. The authors of the third best paper describe the challenges and lessons learned when leveraging the EHR4CR platform to support patient inclusion in academic studies in the context of an important collaboration between private industry and public health institutions. The fourth best paper describes a method and an interactive tool for case-crossover analyses of electronic medical records for patient safety. The last best paper proposes a new method for bias reduction in association studies using electronic health records data. Conclusions: Research in the CRI field continues to accelerate and to mature, leading to tools and platforms deployed at national or international scales with encouraging results. Beyond securing these new platforms for exploiting large-scale health data, another major challenge is the limitation of biases related to the use of “real-world” data. Controlling these biases is a prerequisite for the development of learning health systems.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 672
Author(s):  
Md. Ashrafuzzaman

Ion channels are linked to important cellular processes. For more than half a century, we have been learning various structural and functional aspects of ion channels using biological, physiological, biochemical, and biophysical principles and techniques. In recent days, bioinformaticians and biophysicists having the necessary expertise and interests in computer science techniques including versatile algorithms have started covering a multitude of physiological aspects including especially evolution, mutations, and genomics of functional channels and channel subunits. In these focused research areas, the use of artificial intelligence (AI), machine learning (ML), and deep learning (DL) algorithms and associated models have been found very popular. With the help of available articles and information, this review provide an introduction to this novel research trend. Ion channel understanding is usually made considering the structural and functional perspectives, gating mechanisms, transport properties, channel protein mutations, etc. Focused research on ion channels and related findings over many decades accumulated huge data which may be utilized in a specialized scientific manner to fast conclude pinpointed aspects of channels. AI, ML, and DL techniques and models may appear as helping tools. This review aims at explaining the ways we may use the bioinformatics techniques and thus draw a few lines across the avenue to let the ion channel features appear clearer.


2016 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Veerabhadra Sanekal Nayak ◽  
Mohammed Saleem Khan ◽  
Bharat Kumar Shukla ◽  
Pranjal R. Chaturvedi

<p>Envision dedicating fifteen years to a critical interest and emptying staggering amount of funds into it, at the same time confronting a disappointment rate of 95 percent. That is the crippling reality for pharmaceutical organizations, which toss billions of dollars consistently toward medications that possible won't work – and after that do a reversal to the planning phase and do it once more. Today's medications go to the business sector after an extensive, very costly process of drug development. It takes anywhere in the range of 10 to 15 years, here and there significantly more, to convey a medication from introductory revelation to the hands of patients – and that voyage can cost billions up to 12 billion, to be correct. That is just a lot to spend, and excessively yearn for patients to hold up. Patients can hardly wait 15 years for a lifesaving drug, we require another productive focused on medication revelation and improvement process. Artificial Intelligence, can significantly reduce the time included, and also cut the expenses by more than half. This is made conceivable through a totally distinctive way to deal with medication revelation. With the present technique, for each 100 medications that achieve first stage clinical trials, only one goes ahead to wind up a genuine treatment. That is stand out percent, it's an unsustainable model, particularly when there are ailments, for example, pancreatic malignancy which has a normal five-year survival rate of 6%.</p>


Sign in / Sign up

Export Citation Format

Share Document