Recent Developments in Transition-Metal-Free Functionalization and Derivatization Reactions of Pyridines

Synlett ◽  
2020 ◽  
Author(s):  
Lei Jiao ◽  
Fei-Yu Zhou

AbstractPyridine is an important structural motif that is prevalent in natural products, drugs, and materials. Methods that functionalize and derivatize pyridines have gained significant attention. Recently, a large number of transition-metal-free reactions have been developed. In this review, we provide a brief summary of recent advances in transition-metal-free functionalization and derivatization reactions of pyridines, categorized according to their reaction modes.1 Introduction2 Metalated Pyridines as Nucleophiles2.1 Deprotonation2.2 Halogen–Metal exchange3 Activated Pyridines as Electrophiles3.1 Asymmetric 2-Allylation by Chiral Phosphite Catalysis3.2 Activation of Pyridines by a Bifunctional Activating Group3.3 Alkylation of Pyridines by 1,2-Migration3.4 Alkylation of Pyridines by [3+2] Addition3.5 Pyridine Derivatization by Catalytic In Situ Activation Strategies3.6 Reactions via Heterocyclic Phosphonium Salts4 Radical Reactions for Pyridine Functionalization4.1 Pyridine Functionalization through Radical Addition Reactions4.2 Pyridine Functionalization through Radical–Radical Coupling Reactions5 Derivatization of Pyridines through the Formation of Meisenheimer-Type Pyridyl Anions6 Conclusion

Synthesis ◽  
2020 ◽  
Author(s):  
Yan-Wei Zhao ◽  
Shun-Yi Wang ◽  
Xin-Yu Liu ◽  
Tian Jiang ◽  
Weidong Rao

AbstractA synthesis of benzothiazole derivatives through the reaction of 2-halo-N-allylanilines with K2S in DMF is developed. The trisulfur radical anion S3·–, which is generated in situ from K2S in DMF, initiates the reaction without transition-metal catalysis or other additives. In addition, two C–S bonds are formed and heteroaromatization of benzothiazole is triggered by radical cyclization and H-shift.


Synlett ◽  
2021 ◽  
Author(s):  
Yadong Sun ◽  
Ablimit Abdukader ◽  
Yuhan Lu ◽  
Chenjiang Liu

AbstractA highly efficient method for the synthesis of 1,2,3-thiadiazoles has been developed by utilizing readily available tosylhydrazones and ammonium thiocyanate with ecofriendly EtOH as the solvent at room temperature. The reaction shows a wide scope of substrates and good functional-group tolerance. This protocol can be scaled up to a gram level and can be applied to coupling reactions with 4-(4-bromophenyl)-1,2,3-thiadiazole as the substrate.


2005 ◽  
Vol 77 (12) ◽  
pp. 2011-2020 ◽  
Author(s):  
Masaaki Yoshifuji

Sterically protected organophosphorus compounds are described, involving diphosphenes, phosphaethenes, diphosphinidenecyclobutenes (DPCBs), phosphaalkynes, phosphaquinones, diphosphathienoquinones, and so on of coordination number 2 or 1. Application of the DPCBs as well as phosphinophosphaethenes as a ligand of transition-metal catalysts for several organic coupling reactions has been investigated.


2018 ◽  
Vol 7 (6) ◽  
pp. 1118-1123 ◽  
Author(s):  
Miao Lai ◽  
Yuan Li ◽  
Zhiyong Wu ◽  
Mingqin Zhao ◽  
Xiaoming Ji ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dong Zou ◽  
Lishe Gan ◽  
Fan Yang ◽  
Huan Wang ◽  
Youge Pu ◽  
...  

AbstractThe use of nitroarenes as amino sources in synthesis is challenging. Herein is reported an unusual, straightforward, and transition metal-free method for the net [3 + 2]-cycloaddition reaction of 2-azaallyl anions with nitroarenes. The products of this reaction are diverse 2,5-dihydro-1,2,4-oxadiazoles (>40 examples, up to 95% yield). This method does not require an external reductant to reduce nitroarenes, nor does it employ nitrosoarenes, which are often used in N–O cycloadditions. Instead, it is proposed that the 2-azaallyl anions, which behave as super electron donors (SEDs), deliver an electron to the nitroarene to generate a nitroarene radical anion. A downstream 2-azaallyl radical coupling with a newly formed nitrosoarene is followed by ring closure to afford the observed products. This proposed reaction pathway is supported by computational studies and experimental evidence. Overall, this method uses readily available materials, is green, and exhibits a broad scope.


Synlett ◽  
2018 ◽  
Vol 29 (05) ◽  
pp. 548-555 ◽  
Author(s):  
Liang-Nian He ◽  
Xiao-Fang Liu ◽  
Xiao-Ya Li ◽  
Chang Qiao

Reductive functionalization of CO2 with amines and a reductant, which combines both reduction of CO2 and C–N bond formation in one pot to produce versatile chemicals and energy-storage materials such as formamides, aminals, and methylamines that are usually derived from petroleum feedstock, would be appealing and promising. Herein, we give a brief review on recent developments in the titled CO2 chemistry by employing transition-metal-free catalysis, which can be catalogued as below according to the diversified energy content of the products, that is formamides, aminals, and methylamines being consistent with 2-, 4-, and 6-electron reduction of CO2, respectively. Notably, hierarchical reduction of CO2 with amines to afford at least two products, for example, formamides and methylamines, could be realized with the same catalyst through tuning the hydrosilane type, reaction temperature, or CO2 pressure. Finally, the opportunities and challenges of the reductive functionalization of CO2 with amines are also highlighted.1 Introduction2 2-Electron Reduction of CO2 to Formamide3 6-Electron Reduction of CO2 to Methylamine4 4-Electron Reduction of CO2 to Aminal5 Hierarchical Reduction of CO2 with Amines6 Conclusion


2019 ◽  
Vol 6 (13) ◽  
pp. 2245-2249 ◽  
Author(s):  
Guibing Wu ◽  
Jingwen Wang ◽  
Chengyu Liu ◽  
Maolin Sun ◽  
Lei Zhang ◽  
...  

A metal-free photoredox catalyzed decarboxylative radical coupling of free-carboxylic acids and glyoxylic oximes was developed to synthesize α,β-diamino acids.


Sign in / Sign up

Export Citation Format

Share Document