scholarly journals N-Amino-imidazol-2-one (Nai) Residues as Tools for Peptide Mimicry: Synthesis, Conformational Analysis and Biomedical Applications

Synthesis ◽  
2022 ◽  
Author(s):  
William D. Lubell ◽  
Yousra Hamdane ◽  
Julien Poupart

Abstract N-Amino-imidazol-2-one (Nai) residues are tools for studying peptide-backbone and side-chain conformation and function. Recent methods for substituted Nai residue synthesis, conformational analysis by X-ray crystallography and computation, and biomedical applications are reviewed, demonstrating the utility of this constrained residue to favor biologically active turn conformers with defined χ-dihedral angle orientations.1 Introduction2 Synthetic Methods3 Conformational Analysis4 Biomedical Applications5 Conclusions

1988 ◽  
Vol 66 (11) ◽  
pp. 2733-2750 ◽  
Author(s):  
Saul Wolfe ◽  
Kiyull Yang ◽  
Maged Khalil

Using the MMPEN parameters of Allinger's MMP2(85) force field, a conformational analysis has been performed on four biologically active penicillins; D-ampicillin, L-α-phenoxyethylpenicillin, penicillin G, and penicillin V, and on five biologically inactive or much less active penicillins: L-ampicillin, D-α-phenoxyethylpenicillin, N-methylpenicillin G, 6α-methylpenicillin G, and bisnorpenicillin G. Antibacterial activity is found to be associated with the existence of a global minimum having a compact structure, whose convex face is accessible to a penicillin binding protein (PBP), with the C3-carboxyl group and the side-chain N-H exposed on this face. Using the MMPEP parameters of MMP2(85), a conformational analysis has been performed on phenylacetyl-D-Ala-D-Ala-O−, a peptide model of the normal substrate of a PBP. Labischinski's global minimum has been reproduced, along with structures that correspond to Tipper and Strominger's proposal that the N4—C7 bond of a penicillin corresponds to the Ala–Ala peptide bond, and to Hasan's proposal that the N4—C5 bond of penicillin corresponds to the peptide bond. For both models, conformations of the peptide related to the pseudoaxial and pseudoequatorial conformations of the thiazolidine ring of penicillin G have been examined. It is concluded that penicillin is not a structural analog of the global minimum of the peptide; however, comparisons based on unbound conformations of PBP substrates are unable to determine which model is more appropriate, or which conformation of penicillin G is the biologically significant one. Using the ECEPP/MMPEP strategy, a model of the active site of a PBP has been obtained, following a search of 200,000 structures of the peptide Ac-NH-Val-Gly-Ser-Val-Thr-Lys-NH-Me. This peptide contains the sequence at the active site of a PBP of Streptomyces R61, for which it is also known that the C3-carboxyl group of penicillin binds to the ε-amino group of lysine, and the β-lactam reacts chemically with the serine OH. The lysine and serine side chains and the C-terminal carbonyl group are found to occupy the concave face of the active site model.A strategy for the docking of penicillins or peptides to this model, with full minimization of the conformational energies of the complexes, has been devised. All active penicillins bind through strong hydrogen bonds to the C3-carboxyl group and the side-chain N-H, and with a four-centered relationship between the O-H of serine and the (O)C-N of the β-lactam ring. The geometrical parameters of this relationship are reminiscent of those found in the gas phase transition state of neutral hydration of a carbonyl group. When the energies of formation and geometries of the pseudoaxial and pseudoequatorial penicillin G complexes are examined, there is now a clear preference for the binding of the pseudoaxial conformation, which is the global minimum of the uncomplexed penicillin in this case. A similar examination of the peptide complexes reveals that only the conformation of the peptide that corresponds to Tipper and Strominger's model, and is based on the pseudoaxial conformation of penicillin G, can form a complex with a geometry and energy comparable to those of a biologically active penicillin.


1992 ◽  
Vol 25 (2) ◽  
pp. 205-250 ◽  
Author(s):  
David Shortle

The fundamental relationship between structure and function has served to guide investigations into the workings of living systems at all levels - from the whole organism to individual cells on down to individual molecules. When X-ray crystallography began to reveal the three-dimensional structures of proteins like myoglobin, lysozyme and RNase A, protein chemists were well prepared to draw inferences about functional mechanisms from the precise positioning of amino acid residues they could see. The close proximity between an amino acid side chain and a chemical group on a bound ligand strongly suggests a functional role for that side chain in binding affinity and specificity. Likewise, the nearly universal finding of large clusters of hydrophobic side chains buried in the core of proteins strongly supports a major functional role of hydrophobic interactions in protein folding and stability. Even though eminently plausible hypotheses like these, grounded in the most fundamental principles of chemistry and the logic of structure–function relationships, become widely accepted and make their way into textbooks, protein chemists have felt compelled to search for ways to test them and put them on a more quantitative basis.


2014 ◽  
Vol 47 (3) ◽  
pp. 249-283 ◽  
Author(s):  
Jasmina Radoicic ◽  
George J. Lu ◽  
Stanley J. Opella

AbstractMembrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins, especially those accomplished with the proteins in phospholipid bilayer environments where they function.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

Correlations between structure and function of biological macromolecules have been studied intensively for many years, mostly by indirect methods. High resolution electron microscopy is a unique tool which can provide such information directly by comparing the conformation of biopolymers in their biologically active and inactive state. We have correlated the structure and function of ribosomes, ribonucleoprotein particles which are the site of protein biosynthesis. 70S E. coli ribosomes, used in this experiment, are composed of two subunits - large (50S) and small (30S). The large subunit consists of 34 proteins and two different ribonucleic acid molecules. The small subunit contains 21 proteins and one RNA molecule. All proteins (with the exception of L7 and L12) are present in one copy per ribosome.This study deals with the changes in the fine structure of E. coli ribosomes depleted of proteins L7 and L12. These proteins are unique in many aspects.


2013 ◽  
Vol 33 (6) ◽  
pp. 1041-1047
Author(s):  
Dan LIN ◽  
Huimin ZHAO ◽  
Xiaoyue ZHANG ◽  
Dongxue LAN ◽  
Yuan CHUN
Keyword(s):  

1980 ◽  
Vol 45 (2) ◽  
pp. 482-490 ◽  
Author(s):  
Jaroslav Vičar ◽  
François Piriou ◽  
Pierre Fromageot ◽  
Karel Bláha ◽  
Serge Fermandjian

The diastereoisomeric pairs of cyclodipeptides cis- and trans-cyclo(Ala-Ala), cyclo(Ala-Phe), cyclo(Val-Val) and cyclo(Leu-Leu) containing 85% 13C enriched amino-acid residues were synthesized and their 13C-13C coupling constants were measured. The combination of 13C-13C and 1H-1H coupling constants enabled to estimate unequivocally the side chain conformation of the valine and leucine residues.


1991 ◽  
Vol 56 (9) ◽  
pp. 1963-1970 ◽  
Author(s):  
Jan Hlaváček ◽  
Václav Čeřovský ◽  
Jana Pírková ◽  
Pavel Majer ◽  
Lenka Maletínská ◽  
...  

In a series of analogues of the cholecystokinin octapeptide (CCK-8) the amino acid residues were gradually modified by substituting Gly by Pro in position 4, Trp by His in position 5, Met by Cle in position 6, or the Gly residue was inserted between Tyr and Met in positions 2 and 3 of the peptide chain, and in the case of the cholecystokinin heptapeptide (CCK-7) the Met residues were substituted by Nle or Aib. These peptides were investigated from the point of view of their biological potency in the peripheral and central region. From the results of the biological tests it follows that the modifications carried out in these analogues and in their Nα-Boc derivatives mean a suppression of the investigated biological activities by 2-3 orders of magnitude (at a maximum dose of the tested substance of 2 . 10-2 mg per animal).This means that a disturbance of the assumed biologically active conformation of CCK-8, connected with a considerable decrease of the biological potency of the molecule, takes place not only after introduction of the side chain into its centre (substitution of Gly4), but also after the modification of the side chains of the amino acids or by extension of the backbone in further positions around this central amino acid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Bitam ◽  
Ahmad Elbahnsi ◽  
Geordie Creste ◽  
Iwona Pranke ◽  
Benoit Chevalier ◽  
...  

AbstractC407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4–NBD1 interface.


2018 ◽  
Vol 293 (47) ◽  
pp. 18296-18308 ◽  
Author(s):  
Chelsea Vickers ◽  
Feng Liu ◽  
Kento Abe ◽  
Orly Salama-Alber ◽  
Meredith Jenkins ◽  
...  

Fucoidans are chemically complex and highly heterogeneous sulfated marine fucans from brown macro algae. Possessing a variety of physicochemical and biological activities, fucoidans are used as gelling and thickening agents in the food industry and have anticoagulant, antiviral, antitumor, antibacterial, and immune activities. Although fucoidan-depolymerizing enzymes have been identified, the molecular basis of their activity on these chemically complex polysaccharides remains largely uninvestigated. In this study, we focused on three glycoside hydrolase family 107 (GH107) enzymes: MfFcnA and two newly identified members, P5AFcnA and P19DFcnA, from a bacterial species of the genus Psychromonas. Using carbohydrate-PAGE, we show that P5AFcnA and P19DFcnA are active on fucoidans that differ from those depolymerized by MfFcnA, revealing differential substrate specificity within the GH107 family. Using a combination of X-ray crystallography and NMR analyses, we further show that GH107 family enzymes share features of their structures and catalytic mechanisms with GH29 α-l-fucosidases. However, we found that GH107 enzymes have the distinction of utilizing a histidine side chain as the proposed acid/base catalyst in its retaining mechanism. Further interpretation of the structural data indicated that the active-site architectures within this family are highly variable, likely reflecting the specificity of GH107 enzymes for different fucoidan substructures. Together, these findings begin to illuminate the molecular details underpinning the biological processing of fucoidans.


Synlett ◽  
2019 ◽  
Vol 30 (11) ◽  
pp. 1289-1302 ◽  
Author(s):  
Phil Servatius ◽  
Lukas Junk ◽  
Uli Kazmaier

Peptide modifications via C–C bond formation have emerged as valuable tools for the preparation and alteration of non-proteinogenic amino acids and the corresponding peptides. Modification of glycine subunits in peptides allows for the incorporation of unusual side chains, often in a highly stereoselective manner, orchestrated by the chiral peptide backbone. Moreover, modifications of peptides are not limited to the peptidic backbone. Many side-chain modifications, not only by variation of existing functional groups, but also by C–H functionalization, have been developed over the past decade. This account highlights the synthetic contributions made by our group and others to the field of peptide modifications and their application in natural product syntheses.1 Introduction2 Peptide Backbone Modifications via Peptide Enolates2.1 Chelate Enolate Claisen Rearrangements2.2 Allylic Alkylations2.3 Miscellaneous Modifications3 Side-Chain Modifications3.1 C–H Activation3.1.1 Functionalization via Csp3–H Bond Activation3.2.2 Functionalization via Csp2–H Bond Activation3.2 On Peptide Tryptophan Syntheses4 Conclusion


Sign in / Sign up

Export Citation Format

Share Document