scholarly journals The Function and Expression of ATP-Binding Cassette Transporters Proteins in the Alzheimer's Disease

Author(s):  
Asli Aykac ◽  
Ahmet Özer Sehirli

AbstractDespite many years of research, radical treatment of Alzheimer's disease (AD) has still not been found. Amyloid-β (Aβ) peptide is known to play an important role in the pathogenesis of this disease. AD is characterized by three main changes occurring in the central nervous system: (1) Aβ plaque accumulation that prevents synaptic communication, (2) the accumulation of hyperphosphorylated tau proteins that inhibit the transport of molecules inside neurons, and (3) neuronal cell loss of the limbic system. Mechanisms leading to Aβ accumulation in AD are excessive Aβ production as a result of mutations in amyloid precursor protein or genes, and impairment of clearance of Aβ due to changes in Aβ aggregation properties and/or Aβ removal processes. Human ATP-binding cassette (ABC) transporters are expressed in astrocyte, microglia, neuron, brain capillary endothelial cell, choroid plexus, choroid plexus epithelial cell, and ventricular ependymal cell. ABC transporters have essential detoxification and neuroprotective roles in the brain. The expression and functional changes in ABC transporters contribute to the accumulation of Aβ peptide. In conclusion, the review was aimed to summarize and highlight accumulated evidence in the literature focusing on the changing functions of human ABC transporter members, in AD pathogenesis and progression.

2016 ◽  
Vol 36 (2) ◽  
Author(s):  
Hongyun Li ◽  
Tim Karl ◽  
Brett Garner

ATP-binding cassette transporter A7 (ABCA7) is expressed in the brain and linked with Alzheimer's disease. Since other ABC transporters regulate adult neurogenesis, we assessed neurogenesis in wild-type (WT) and Abca7 deficient mice. Abca7 deletion did not affect adult neurogenesis in the mouse.


2020 ◽  
Vol 2 (8) ◽  
pp. 3467-3480 ◽  
Author(s):  
Dusan Mrdenovic ◽  
Zhangfei Su ◽  
Wlodzimierz Kutner ◽  
Jacek Lipkowski ◽  
Piotr Pieta

Neurodegeneration in Alzheimer's disease is associated with disruption of the neuronal cell membrane by the amyloid β (Aβ) peptide.


2020 ◽  
Vol 21 (14) ◽  
pp. 5007 ◽  
Author(s):  
Eunjoo Nam ◽  
Yeong-Bae Lee ◽  
Cheil Moon ◽  
Keun-A Chang

Total tau (t-tau) and phosphorylated tau (p-tau) protein elevations in cerebrospinal fluid (CFS) are well-established hallmarks of Alzheimer’s disease (AD), while the associations of serum t-tau and p-tau levels with AD have been inconsistent across studies. To identify more accessible non-invasive AD biomarkers, we measured serum tau proteins and associations with cognitive function in age-matched controls (AMC, n = 26), mild cognitive impairment group (MCI, n = 30), and mild-AD group (n = 20) according to the Mini-mental State Examination (MMSE), Clinical Dementia Rating (CDR), and Global Deterioration Scale (GDS) scores. Serum t-tau, but not p-tau, was significantly higher in the mild-AD group than AMC subjects (p < 0.05), and there were significant correlations of serum t-tau with MMSE and GDS scores. Receiver operating characteristic (ROC) analysis distinguished mild-AD from AMC subjects with moderate sensitivity and specificity (AUC = 0.675). We speculated that tau proteins in neuronal cell-derived exosomes (NEX) isolated from serum would be more strongly associated with brain tau levels and disease characteristics, as these exosomes can penetrate the blood-brain barrier. Indeed, ELISA and Western blotting indicated that both NEX t-tau and p-tau (S202) were significantly higher in the mild-AD group compared to AMC (p < 0.05) and MCI groups (p < 0.01). In contrast, serum amyloid β (Aβ1–42) was lower in the mild-AD group compared to MCI groups (p < 0.001). During the 4-year follow-up, NEX t-tau and p-tau (S202) levels were correlated with the changes in GDS and MMSE scores. In JNPL3 transgenic (Tg) mice expressing a human tau mutation, t-tau and p-tau expression levels in NEX increased with neuropathological progression, and NEX tau was correlated with tau in brain tissue exosomes (tEX), suggesting that tau proteins reach the circulation via exosomes. Taken together, our data suggest that serum tau proteins, especially NEX tau proteins, are useful biomarkers for monitoring AD progression.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Mahdiabadi ◽  
Sara Momtazmanesh ◽  
George Perry ◽  
Nima Rezaei

Abstract Alzheimer’s disease (AD), the most common cause of dementia, is characterized by progressive cognitive and memory impairment ensued from neuronal dysfunction and eventual death. Intraneuronal deposition of tau proteins and extracellular senile amyloid-β plaques have ruled as the supreme postulations of AD for a relatively long time, and accordingly, a wide range of therapeutics, especially immunotherapies have been implemented. However, none of them resulted in significant positive cognitive outcomes. Especially, the repetitive failure of anti-amyloid therapies proves the inefficiency of the amyloid cascade hypothesis, suggesting that it is time to reconsider this hypothesis. Thus, for the time being, the focus is being shifted to neuroinflammation as a third core pathology in AD. Neuroinflammation was previously considered a result of the two aforementioned phenomena, but new studies suggest that it might play a causal role in the pathogenesis of AD. Neuroinflammation can act as a double-edged sword in the pathogenesis of AD, and the activation of glial cells is indispensable for mediating such attenuating or detrimental effects. The association of immune-related genes polymorphisms with the clinical phenotype of AD as well as the protective effect of anti-inflammatory drugs like nonsteroidal anti-inflammatory drugs supports the possible causal role of neuroinflammation in AD. Here, we comprehensively review immune-based therapeutic approaches toward AD, including monoclonal antibodies and vaccines. We also discuss their efficacy and underlying reasons for shortcomings. Lastly, we highlight the capacity of modulating the neuroimmune interactions and targeting neuroinflammation as a promising opportunity for finding optimal treatments for AD.


2021 ◽  
Author(s):  
◽  
Rosemary Heathcott

<p>Heparan sulphate proteoglycans (HSPG) are central to numerous processes of the mammalian cell. The highly charged negative side chains of the heparan sulphate (HS) oligosaccharides are essential for the regulatory and structural functions of the proteoglycan. Synthetic HS compounds have potential therapeutic value due to their ability to mimic naturally occurring HS. Niemann-Pick disease type C (NPC) is a fatal childhood neurodegenerative disease with characteristic cholesterol and sphingolipid accumulation in the late endosome or lysosome. Alzheimer’s disease, another neurodegenerative disorder, shares alterations of cholesterol and amyloid β metabolism with NPC. In this study,a set of novel heparan sulphate compounds with a range of structures and oligosaccharide side groups with a variety of degrees of sulphation was investigated with regards to their effects on cholesterol and amyloid β metabolism in cell line models of these two diseases. Fluorescent staining of cholesterol and confocal microscopy showed highly sulphated compounds reduce the accumulation of cholesterol in the perinuclear lysosomal storage organelles in patient fibroblast cell lines. The compounds had no effect on secreted amyloid β levels or amyloid precursor protein levels in a neuronal cell line model of early onset Alzheimer’s disease. The mechanism of cholesterol reduction is unclear but may be related to a reduction in HSPG-associated endocytosis of LDL/cholesterol.</p>


2019 ◽  
Vol 11 (474) ◽  
pp. eaau6550 ◽  
Author(s):  
Brendan P. Lucey ◽  
Austin McCullough ◽  
Eric C. Landsness ◽  
Cristina D. Toedebusch ◽  
Jennifer S. McLeland ◽  
...  

In Alzheimer’s disease (AD), deposition of insoluble amyloid-β (Aβ) is followed by intracellular aggregation of tau in the neocortex and subsequent neuronal cell loss, synaptic loss, brain atrophy, and cognitive impairment. By the time even the earliest clinical symptoms are detectable, Aβ accumulation is close to reaching its peak and neocortical tau pathology is frequently already present. The period in which AD pathology is accumulating in the absence of cognitive symptoms represents a clinically relevant time window for therapeutic intervention. Sleep is increasingly recognized as a potential marker for AD pathology and future risk of cognitive impairment. Previous studies in animal models and humans have associated decreased non–rapid eye movement (NREM) sleep slow wave activity (SWA) with Aβ deposition. In this study, we analyzed cognitive performance, brain imaging, and cerebrospinal fluid (CSF) AD biomarkers in participants enrolled in longitudinal studies of aging. In addition, we monitored their sleep using a single-channel electroencephalography (EEG) device worn on the forehead. After adjusting for multiple covariates such as age and sex, we found that NREM SWA showed an inverse relationship with AD pathology, particularly tauopathy, and that this association was most evident at the lowest frequencies of NREM SWA. Given that our study participants were predominantly cognitively normal, this suggested that changes in NREM SWA, especially at 1 to 2 Hz, might be able to discriminate tau pathology and cognitive impairment either before or at the earliest stages of symptomatic AD.


2019 ◽  
Vol 244 (18) ◽  
pp. 1665-1679 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Eunjin Sohn ◽  
Jiyeon Yoon ◽  
Bu-Yeo Kim ◽  
...  

Annona atemoya is a hybrid of Annona squamosa and Annona cherimola that grow in several subtropical or tropical areas such as Florida in the US, Philippines, Cuba, Jamaica, Taiwan, and Jeju in South Korea. We report that the A. atemoya leaves (AAL) have inhibitory effects on the pathogenesis and regulatory mechanisms of Alzheimer’s disease (AD). Ethanol extract of AAL prevented amyloid-β (Aβ) aggregation and increased free radical scavenging activity. In addition, AAL extract exerted protective effects against neuronal cell death in HT22 hippocampal cells. Moreover, oral administration of AAL extract significantly improved memory loss in the passive avoidance task and Y-maze test, as well as downregulated the expression of neuronal markers neuronal nuclei and brain-derived neurotrophic factor in Aβ-injected AD mice. To verify the molecular mechanisms responsible for anti-AD actions of AAL, we conducted the antibody microarray analysis and found that epidermal growth factor receptor/G protein-coupled receptor kinase 2 signaling was activated in neuronal cells and AD-like mouse models. Additionally, quantitative analyses of the six standard compounds using high-performance liquid chromatography revealed that rutin is the most abundant compound of AAL. Furthermore, efficacy analyses of six standard compounds showed that rutin and isoquercitrin had significant inhibitory activity on Aβ aggregation. Taken together with biological activity and the content of compounds, rutin maybe a bioactive compound of AAL in the AD pathogenesis. Overall, our findings provide the first scientific support for the therapeutic effects of AAL in AD and AD-related disorders. Impact statement Our study was aimed to find a novel candidate drug for Alzheimer’s disease (AD) using natural products. We assessed the effects of Annona atemoya extracts on crucial events in the pathogenesis of AD. A. atemoya leaf (AAL) extract significantly inhibited amyloid-β aggregation, oxidative stress, neuronal cell death, and memory impairment through the epidermal growth factor receptor/G protein-coupled receptor kinase 2 pathway. Simultaneous analysis using HPLC determined six standard compounds of AAL extract, and rutin was identified as a bioactive compound. Of note, the anti-AD activity of AAL extract was more significant compared to other extracts from medicinal plants of which efficacy was previously reported. The potential of AAL extract as an anti-AD agent may provide insight into the new drug development for AD treatment.


2004 ◽  
Vol 279 (18) ◽  
pp. 18169-18177 ◽  
Author(s):  
Christopher D. Syme ◽  
Rebecca C. Nadal ◽  
Stephen E. J. Rigby ◽  
John H. Viles

Sign in / Sign up

Export Citation Format

Share Document