Proposed Standards and Regulatory Mechanisms for New Homeopathic Drug Development

2021 ◽  
Vol 34 (04) ◽  
pp. 283-290
Author(s):  
Gitanjali Talele ◽  
Rajesh Shah

Abstract Introduction Researchers working with new insights and new targets in new drug discovery in the homeopathy space observe that the path of drug-development and market authorisation has been less travelled and the pathway is not yet well-mapped. The need of the time is to define clear guidelines and regulatory mechanisms to facilitate the process of new drug discovery. Overview The article is about the proposed methods for identifying the new homeopathic substances for therapeutic use. An overview of the current regulations for drug development in India is discussed in this article. Method of new drug development in homeopathy, standards and regulatory mechanism for approval of new drugs are proposed with few illustrations and references. An introductory plan, based on the perspective and experience of researcher, practitioner, academician and inventor for drug discovery is proposed. Discussion An urgent need for setting up the guidelines for new drug discovery has been identified and a basic proposition is made for the same, suggesting practical, pragmatic and achievable measures, and independent regulatory body to encourage drug development and research.

2019 ◽  
Vol 8 (4) ◽  
pp. 20-26 ◽  
Author(s):  
S. A. Rozhnova ◽  
A. V. Tsypkina

Introduction. In the development and introduction of medicines into production, the aim of pharmaceutical manufacturers is to comply with the principle of «Quality-by-Design» (QbD). The International Council for Harmonisation (ICH) has created a number of GxP standards, which have become the regulatory framework for the development of documentation regulating the requirements for the development and production of drug products for countries focused on bringing their products to the world pharmaceutical market. The analysis of the system of regulation of pharmaceutical stages of development of new drugs in the territory of the Eurasian Economic Union was not considered, but for the formation of a systematic approach to the management of the process of pharmaceutical development it is necessary to describe them.Aim. To analyze the possibility of applying the QbD principle to the process of drug development at domestic pharmaceutical enterprises.Materials and methods. Content analysis of scientific publications, system and comparative analysis, sociological methods of research in the field of pharmaceutical development.Results and discussions. Regulatory state requirements to the organization and conduct of drug development procedures are analyzed and described. A number of systemic and sectoral problems typical for domestic pharmaceutical manufacturers in the organization of the development and implementation of new drug products. It is established that one of the main problems for Russian enterprises was the organization of the process as a whole and its individual procedures. To solve the problem of organization of procedures for the development and implementation of new medicines, we formed a methodological support, developed on the basis of a systematic approach and international requirements from the quality system.Conclusion. The main problem identified by the manufacturers is the lack of methodological support for the organization of the processes of pharmaceutical development and the introduction of new drugs in the part of research going to the stage of preclinical and clinical development. The decisions adopted by the Eurasian Economic Union do not affect such aspects of pharmaceutical development regulation as the organization of processes, their management and methodological support aimed at the implementation of the QbD principle. To solve this problem, we have developed guidelines for the implementation of the processes of pharmaceutical development and the introduction of new drug products, which allowed us to apply unified and formalized approaches to their organization. 


2012 ◽  
Vol 23 (21) ◽  
pp. 4162-4164 ◽  
Author(s):  
Peter K. Sorger ◽  
Birgit Schoeberl

The profound challenges facing clinicians, who must prescribe drugs in the face of dramatic variability in response, and the pharmaceutical industry, which must develop new drugs despite ever-rising costs, represent opportunities for cell biologists interested in rethinking the conceptual basis of pharmacology and drug discovery. Much better understanding is required of the quantitative behaviors of networks targeted by drugs in cells, tissues, and organisms. Cell biologists interested in these topics should learn more about the basic structure of drug development campaigns and hone their quantitative and programming skills. A world of conceptual challenges and engaging industry–academic collaborations awaits, all with the promise of delivering real benefit to patients and strained healthcare systems.


2014 ◽  
Vol 42 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Opher Gileadi

Activation of cGMP synthesis leads to vasodilation, and is an important mechanism in clinical treatment of angina, heart failure, and severe peripheral and pulmonary hypertension. The nitric oxide-responsive sGC (soluble guanylate cyclase) has been the target of recent drug discovery efforts. The present review surveys recent data on the structure and regulation of sGC, and the prospects of new avenues for therapeutic intervention.


2019 ◽  
Vol 7 (6) ◽  
pp. 62-67 ◽  
Author(s):  
Amol B Deore ◽  
Jayprabha R Dhumane ◽  
Rushikesh Wagh ◽  
Rushikesh Sonawane

Drug discovery is a process which aims at identifying a compound therapeutically useful in curing and treating disease. This process involves the identification of candidates, synthesis, characterization, validation, optimization, screening and assays for therapeutic efficacy. Once a compound has shown its significance in these investigations, it will initiate the process of drug development earlier to clinical trials. New drug development process must continue through several stages in order to make a medicine that is safe, effective, and has approved all regulatory requirements. One overall theme of our article is that the process is sufficiently long, complex, and expensive so that many biological targets must be considered for every new medicine ultimately approved for clinical use and new research tools may be needed to investigate each new target.  From initial discovery to a marketable medicine is a long, challenging task. It takes about 12 - 15 years from discovery to the approved medicine and requires an investment of about US $1 billion. On an average, a million molecules screened but only a single is explored in late stage clinical trials and is finally made obtainable for patients. This article provides a brief outline of the processes of new drug discovery and development.   


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Lucia Fallacara ◽  
Iuni Margaret Laura Tris ◽  
Amalia Belfiore ◽  
Maurizio Botta

The Drug development process has undergone a great change over the years. The way, from haphazard discovery of new natural products with a potent biological activity to a rational design of small molecule effective against a selected target, has been long and sprinkled with difficulties. The oldest drug development models are widely perceived as opaque and inefficient, with the cost of research and development continuing to rise even if the production of new drugs remains constant. The present paper, will give an overview of the principles, approaches, processes, and status of drug discovery today with an eye towards the past and the future.


Author(s):  
Abdulkadir Civan ◽  
Michael T. Maloney

Abstract This work extends prior research that finds drug development is driven by demand factors such as mortality rates of the diseases new drugs are aimed at. Here we find that the number of drugs in the development pipeline is strongly positively related to the price of existing drugs treating those diseases. This gives us a direct price elasticity measure from which we can draw some inference about the effect on new drug development that might occur if the pricing regime in the United States were to change.


2017 ◽  
Vol II (I) ◽  
pp. 34-43
Author(s):  
Parniya Akbar Ali ◽  
Farah Hanif ◽  
Hosna Nettour ◽  
Mubashar Rehman

New drugs are mostly obtained from Natural sources. The traditional and ethic medicines have provided evidence on the therapeutic properties and resulted in some distinguished drug discovery of natural products. The microorganisms and the endogenous active materials from human or animal have also become a significant approach to the discovery of a drug. Bioinformatics and artificial intelligence have facilitated the study and development of products. For discovery of natural products different software have been used. Different computational software needed in the future for the predicting features in new drug development, for instance pharmacokinetic and pharmacodynamics, in drug development lead positive impact. This review focus on natural product drug discovery and uses innovative strategies and techniques as a part of discovery of drugs from natural products.


Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 51-59
Author(s):  
Porkodi Ayyar ◽  
Umamaheswari Subramanian

Drug repurposing refers to finding new indications for existing drugs. The paradigm shift from traditional drug discovery to drug repurposing is driven by the fact that new drug pipelines are getting dried up because of mounting Research & Development (R&D) costs, long timeline for new drug development, low success rate for new molecular entities, regulatory hurdles coupled with revenue loss from patent expiry and competition from generics. Anaemic drug pipelines along with increasing demand for newer effective, cheaper, safer drugs and unmet medical needs call for new strategies of drug discovery and, drug repurposing seems to be a promising avenue for such endeavours. Drug repurposing strategies have progressed over years from simple serendipitous observations to more complex computational methods in parallel with our ever-growing knowledge on drugs, diseases, protein targets and signalling pathways but still the knowledge is far from complete. Repurposed drugs too have to face many obstacles, although lesser than new drugs, before being successful.


2019 ◽  
Vol 26 (21) ◽  
pp. 3838-3873 ◽  
Author(s):  
Agostino Bruno ◽  
Gabriele Costantino ◽  
Luca Sartori ◽  
Marco Radi

Background: Discovery and development of a new drug is a long lasting and expensive journey that takes around 20 years from starting idea to approval and marketing of new medication. Despite R&D expenditures have been constantly increasing in the last few years, the number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. To cope with this issue, a number of in silico techniques are currently being used for an early stage evaluation/prediction of potential safety issues, allowing to increase the drug-discovery success rate and reduce costs associated with the development of a new drug. Methods: In the present review, we will analyse the early steps of the drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. Results: A comprehensive list of widely used in silico tools, databases, and public initiatives that can be effectively implemented and used in the drug discovery pipeline has been provided. A few examples of how these tools can be problem-solving and how they may increase the success rate of a drug discovery and development program have been also provided. Finally, selected examples where the application of in silico tools had effectively contributed to the development of marketed drugs or clinical candidates will be given. Conclusion: The in silico toolbox finds great application in every step of early drug discovery: (i) target identification and validation; (ii) hit identification; (iii) hit-to-lead; and (iv) lead optimization. Each of these steps has been described in details, providing a useful overview on the role played by in silico tools in the decision-making process to speed-up the discovery of new drugs.


MIS Quarterly ◽  
2021 ◽  
Vol 45 (3) ◽  
pp. 1451-1482
Author(s):  
Bowen Lou ◽  
◽  
Lynn Wu ◽  

Advances in artificial intelligence (AI) could potentially reduce the complexities and costs in drug discovery. We conceptualize an AI innovation capability that gauges a firm’s ability to develop, manage, and utilize AI resources for innovation. Using patents and job postings to measure AI innovation capability, we find that it can affect a firm’s discovery of new drug-target pairs for preclinical studies. The effect is particularly pronounced for developing new drugs whose mechanism of impact on a disease is known and for drugs at the medium level of chemical novelty. However, AI is less helpful in developing drugs when there is no existing therapy. AI is also less helpful for drugs that are either entirely novel or those that are incremental “follow-on” drugs. Examining AI skills, a key component of AI innovation capability, we find that the main effect of AI innovation capability comes from employees possessing the combination of AI skills and domain expertise in drug discovery as opposed to employees possessing AI skills only. Having the combination is key because developing and improving AI tools is an iterative process requiring synthesizing inputs from both AI and domain experts during both the development and the operational stages of the tool. Taken together, our study sheds light on both the advantages and the limitations of using AI in drug discovery and how to effectively manage AI resources for drug development.


Sign in / Sign up

Export Citation Format

Share Document