scholarly journals The Use of Artificial Neural Networks for the Prediction of Surgical Site Infection Following TKA

Author(s):  
Ingwon Yeo ◽  
Christian Klemt ◽  
Matthew Gerald Robinson ◽  
John G. Esposito ◽  
Akachimere Cosmas Uzosike ◽  
...  

AbstractThis is a retrospective study. Surgical site infection (SSI) is associated with adverse postoperative outcomes following total knee arthroplasty (TKA). However, accurately predicting SSI remains a clinical challenge due to the multitude of patient and surgical factors associated with SSI. This study aimed to develop and validate machine learning models for the prediction of SSI following primary TKA. This is a retrospective study for patients who underwent primary TKA. Chart review was performed to identify patients with superficial or deep SSIs, defined in concordance with the criteria of the Musculoskeletal Infection Society. All patients had a minimum follow-up of 2 years (range: 2.1–4.7 years). Five machine learning algorithms were developed to predict this outcome, and model assessment was performed by discrimination, calibration, and decision curve analysis. A total of 10,021 consecutive primary TKA patients was included in this study. At an average follow-up of 2.8 ± 1.1 years, SSIs were reported in 404 (4.0%) TKA patients, including 223 superficial SSIs and 181 deep SSIs. The neural network model achieved the best performance across discrimination (area under the receiver operating characteristic curve = 0.84), calibration, and decision curve analysis. The strongest predictors of the occurrence of SSI following primary TKA, in order, were Charlson comorbidity index, obesity (BMI >30 kg/m2), and smoking. The neural network model presented in this study represents an accurate method to predict patient-specific superficial and deep SSIs following primary TKA, which may be employed to assist in clinical decision-making to optimize outcomes in at-risk patients.

2021 ◽  
Vol 13 (5) ◽  
pp. 969
Author(s):  
Ka Lok Chan ◽  
Ehsan Khorsandi ◽  
Song Liu ◽  
Frank Baier ◽  
Pieter Valks

In this paper, we present the estimation of surface NO2 concentrations over Germany using a machine learning approach. TROPOMI satellite observations of tropospheric NO2 vertical column densities (VCDs) and several meteorological parameters are used to train the neural network model for the prediction of surface NO2 concentrations. The neural network model is validated against ground-based in situ air quality monitoring network measurements and regional chemical transport model (CTM) simulations. Neural network estimation of surface NO2 concentrations show good agreement with in situ monitor data with Pearson correlation coefficient (R) of 0.80. The results also show that the machine learning approach is performing better than regional CTM simulations in predicting surface NO2 concentrations. We also performed a sensitivity analysis for each input parameter of the neural network model. The validated neural network model is then used to estimate surface NO2 concentrations over Germany from 2018 to 2020. Estimated surface NO2 concentrations are used to investigate the spatio-temporal characteristics, such as seasonal and weekly variations of NO2 in Germany. The estimated surface NO2 concentrations provide comprehensive information of NO2 spatial distribution which is very useful for exposure estimation. We estimated the annual average NO2 exposure for 2018, 2019 and 2020 is 15.53, 15.24 and 13.27 µµg/m3, respectively. While the annual average NO2 concentration of 2018, 2019 and 2020 is only 12.79, 12.60 and 11.15 µµg/m3. In addition, we used the surface NO2 data set to investigate the impacts of the coronavirus disease 2019 (COVID-19) pandemic on ambient NO2 levels in Germany. In general, 10–30% lower surface NO2 concentrations are observed in 2020 compared to 2018 and 2019, indicating the significant impacts of a series of restriction measures to reduce the spread of the virus.


2021 ◽  
Vol 9 (11) ◽  
pp. 232596712110533
Author(s):  
Yining Lu ◽  
Ayoosh Pareek ◽  
Ryan R. Wilbur ◽  
Devin P. Leland ◽  
Aaron J. Krych ◽  
...  

Background: Management of anterior shoulder instability (ASI) aims to reduce risk of future recurrence and prevent complications via nonoperative and surgical management. Machine learning may be able to reliably provide predictions to improve decision making for this condition. Purpose: To develop and internally validate a machine-learning model to predict the following outcomes after ASI: (1) recurrent instability, (2) progression to surgery, and (3) the development of symptomatic osteoarthritis (OA) over long-term follow-up. Study Design: Cohort study (prognosis); Level of evidence, 2. Methods: An established geographic database of >500,000 patients was used to identify 654 patients aged <40 years with an initial diagnosis of ASI between 1994 and 2016; the mean follow-up was 11.1 years. Medical records were reviewed to obtain patient information, and models were generated to predict the outcomes of interest. Five candidate algorithms were trained in the development of each of the models, as well as an additional ensemble of the algorithms. Performance of the algorithms was assessed using discrimination, calibration, and decision curve analysis. Results: Of the 654 included patients, 443 (67.7%) experienced multiple instability events, 228 (34.9%) underwent surgery, and 39 (5.9%) developed symptomatic OA. The ensemble gradient-boosted machines achieved the best performances based on discrimination (via area under the receiver operating characteristic curve [AUC]: AUCrecurrence = 0.86), AUCsurgery = 0.76, AUCOA = 0.78), calibration, decision curve analysis, and Brier score (Brierrecurrence = 0.138, Briersurgery = 0.185, BrierOA = 0.05). For demonstration purposes, models were integrated into a single web-based open-access application able to provide predictions and explanations for practitioners and researchers. Conclusion: After identification of key features, including time from initial instability, age at initial instability, sports involvement, and radiographic findings, machine-learning models were developed that effectively and reliably predicted recurrent instability, progression to surgery, and the development of OA in patients with ASI. After careful external validation, these models can be incorporated into open-access digital applications to inform patients, clinicians, and researchers regarding quantifiable risks of relevant outcomes in the clinic.


Author(s):  
Duncan MacMichael ◽  
Dong Si

This article is driven by three goals. The first is to use machine learning to predict tree cover types, helping to address current challenges faced by U.S. forest management agencies. The second is to bring previous research in the area up-to-date, owing to a lack of development over time. The third is to improve on previous results with new data analysis, higher accuracy, and higher reliability. A Deep Neural Network (DNN) was constructed and compared with three baseline traditional machine learning models: Naïve Bayes, Decision Tree, and K-Nearest Neighbor (KNN). The neural network model achieved 91.55% accuracy while the best performing traditional classifier, K-Nearest Neighbor, managed 74.61%. In addition, the neural network model performed 20.97% better than the past neural networks, which illustrates both advances in machine learning algorithms, as well as improved accuracy high enough to apply practically to forest management issues. Using the techniques outlined in this article, agencies can cost-efficiently and quickly predict tree cover type and expedite natural resource inventorying.


2020 ◽  
Vol 49 (5) ◽  
pp. 930-939
Author(s):  
Chris R. M. Hagen ◽  
Ameet Singh ◽  
J. Scott Weese ◽  
Quinn Marshall ◽  
Alex zur Linden ◽  
...  

Author(s):  
Hyun-il Lim

The neural network is an approach of machine learning by training the connected nodes of a model to predict the results of specific problems. The prediction model is trained by using previously collected training data. In training neural network models, overfitting problems can occur from the excessively dependent training of data and the structural problems of the models. In this paper, we analyze the effect of DropConnect for controlling overfitting in neural networks. It is analyzed according to the DropConnect rates and the number of nodes in designing neural networks. The analysis results of this study help to understand the effect of DropConnect in neural networks. To design an effective neural network model, the DropConnect can be applied with appropriate parameters from the understanding of the effect of the DropConnect in neural network models.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shipra Banik ◽  
A. F. M. Khodadad Khan ◽  
Mohammad Anwer

Forecasting stock market has been a difficult job for applied researchers owing to nature of facts which is very noisy and time varying. However, this hypothesis has been featured by several empirical experiential studies and a number of researchers have efficiently applied machine learning techniques to forecast stock market. This paper studied stock prediction for the use of investors. It is always true that investors typically obtain loss because of uncertain investment purposes and unsighted assets. This paper proposes a rough set model, a neural network model, and a hybrid neural network and rough set model to find optimal buy and sell of a share on Dhaka stock exchange. Investigational findings demonstrate that our proposed hybrid model has higher precision than the single rough set model and the neural network model. We believe this paper findings will help stock investors to decide about optimal buy and/or sell time on Dhaka stock exchange.


2020 ◽  
pp. 1141-1164
Author(s):  
Duncan MacMichael ◽  
Dong Si

This article is driven by three goals. The first is to use machine learning to predict tree cover types, helping to address current challenges faced by U.S. forest management agencies. The second is to bring previous research in the area up-to-date, owing to a lack of development over time. The third is to improve on previous results with new data analysis, higher accuracy, and higher reliability. A Deep Neural Network (DNN) was constructed and compared with three baseline traditional machine learning models: Naïve Bayes, Decision Tree, and K-Nearest Neighbor (KNN). The neural network model achieved 91.55% accuracy while the best performing traditional classifier, K-Nearest Neighbor, managed 74.61%. In addition, the neural network model performed 20.97% better than the past neural networks, which illustrates both advances in machine learning algorithms, as well as improved accuracy high enough to apply practically to forest management issues. Using the techniques outlined in this article, agencies can cost-efficiently and quickly predict tree cover type and expedite natural resource inventorying.


Author(s):  
Aravind Akella ◽  
Vibhor Kaushik

AbstractThe development of Coronary Artery Disease (CAD), one of the most prevalent diseases in the world, is heavily influenced by several modifiable risk factors. Predictive models built using machine learning (ML) algorithms may assist healthcare practitioners in timely detection of CAD, and ultimately, may improve outcomes. In this study, we have applied six different ML algorithms to predict the presence of CAD amongst patients listed in an openly available dataset provided by the University of California Irvine (UCI) Machine Learning Repository, named “the Cleveland dataset.” All six ML algorithms achieved accuracies greater than 80%, with the “Neural Network” algorithm achieving accuracy greater than 93%. The recall achieved with the “Neural Network” model is also highest of the six models (0.93). Additionally, five of the six algorithms resulted in very similar AUC-ROC curves. The AUC-ROC curve corresponding to the “Neural Network” algorithm is slightly steeper implying higher “true positive percentage” achieved with this model. We also extracted the variables of importance in the “Neural Network” model to help in the risk assessment. We have released the full computer code generated in this study in the public domain as a preliminary effort toward developing an open solution for predicting the presence of coronary artery disease in a given population and present a workflow model for implementing a possible solution.


Author(s):  
Fahem Abu Bakar ◽  
◽  
Nazri Mohd Nawi ◽  
Abdulkareem A. Hezam ◽  
◽  
...  

The use of Social Network Sites (SNS) is on the rise these days, particularly among the younger generations. Users can communicate their interests, feelings, and everyday routines thanks to the availability of social media sites. Many studies show that properly utilizing user-generated content (UGC) can aid in determining people's mental health status. The use of the UGC could aid in the prediction of mental health, particularly depression, where it is a significant medical condition that impairs one's ability to work, learn, eat, sleep, and enjoy life. However, all information about a person's mood and negativism can be gathered from their SNS user profile. Therefore, this study utilizes SNS as a data source by using machine learning models to screen and identify users in categorizing users based on their mental health. The performance of three machine learning models is evaluated to classify the UGC: Decision Forest, Neural Network, and Support Vector Machine (SVM). The results show that the accuracy and recall result of the Neural Network model is the same as the Support Vector Machine (SVM) model, which is 78.27% and 0.042, but Neural Network performs better in the average precision value. This proves that the Neural Network model is the best model for making predictions to determine the level of depression by using social media posts.


Sign in / Sign up

Export Citation Format

Share Document