Compressive Myelopathy Secondary to TRPV4 Skeletal Dysplasia: Spondylometaphyseal Dysplasia, Kozlowski Type

Author(s):  
Vykuntaraju K. Gowda ◽  
Varunvenkat M. Srinivasan ◽  
Varsha M. Reddy ◽  
Dhananjaya K. Vamyanmane ◽  
Sanjay K. Shivappa ◽  
...  

AbstractTransient receptor potential vanilloid 4 channel (TRPV4) gene mutations have been described in skeletal system and peripheral nervous system pathology. The case described here is a 9-year-old male child patient, born to a nonconsanguineous marriage with normal birth history who had difficulty in walking and stiffness of joints for the last 7 years, and progressive weakness of all four limbs and urine incontinence for 1 year following falls. Physical examination showed below-average weight and height and short trunk. Musculoskeletal examination revealed bony prominence bilaterally in the knee joints and contractures in knee and elbow joints with brachydactyly; muscle tone was increased, with brisk deep tendon reflexes. Skeletal survey showed platyspondyly with anterior beaking with metaphyseal dysplasia. Magnetic resonance imaging of the spine revealed atlantoaxial instability with hyperintense signal changes at a cervicomedullary junction and upper cervical cord with thinning and spinal canal stenosis suggestive of compressive myelopathy with platyspondyly and anterior beaking of the spine at cervical, thoracic and lumbar vertebrae. Exome sequencing revealed a heterozygous de novo variant c.2389G > A in exon 15 of TRPV4, which results in the amino acid substitution p.Glu797Lys in the encoded protein. The characteristics observed indicated spondylometaphyseal dysplasia, Kozlowski type (SMD-K). The child underwent surgical intervention for compressive myelopathy by reduction of atlantoaxial dislocation with C1 lateral mass and C2 pars fusion using rib graft and fixation using screws and rods. To conclude, for any child presenting with progressive kyphoscoliosis, short stature, platyspondyly, and metaphyseal changes, a diagnosis of SMD-K should be considered and the patient and family should be advised to avoid spinal injuries.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
M. Hamard ◽  
S. P. Martin ◽  
S. Boudabbous

Retroodontoid pseudotumor (ROP) is a nonneoplasic lesion of unknown etiology, commonly associated with inflammatory conditions, and the term of pannus is usually used. Less frequently, ROP formation can develop with other noninflammatory entities, with atlantoaxial instability as most accepted pathophysiological mechanism for posttraumatic or degenerative ROP. As it can clinically and radiologically mimic a malignant tumor, it is paramount for the radiologist to know this entity. Magnetic resonance imaging is the modality of choice to reveal the possible severe complication of ROP in the form of a compressive myelopathy of the upper cervical cord. The purpose of the surgical treatment is the regression or complete disappearance of ROP, with posterior decompression by laminectomy and posterior C1-C2 or occipitocervical fixation. We present the case of an elderly patient with retroodontoid soft tissue mass secondary to a chronic atlantoaxial instability on os odontoideum, an extremely rare cause of ROP. The patient developed a posttraumatic cervical myelopathy related to the decompensation of this C1-C2 instability responsible for the formation of a compressive ROP. We will overview the retroodontoid pseudotumor and its differential diagnosis.


2012 ◽  
Vol 302 (9) ◽  
pp. L941-L948 ◽  
Author(s):  
Tina Marie Lieu ◽  
Allen C. Myers ◽  
Sonya Meeker ◽  
Bradley J. Undem

We addressed the hypothesis that allergic inflammation in guinea pig airways leads to a phenotypic switch in vagal tracheal cough-causing, low-threshold mechanosensitive Aδ neurons, such that they begin expressing functional transient receptor potential vanilloid (TRPV1) channels. Guinea pigs were actively sensitized to ovalbumin (OVA) and beginning 21 days later exposed via aerosol to OVA daily for 3 days. Tracheal-specific neurons were identified in the nodose ganglion using retrograde tracing techniques. Tracheal specific neurons were isolated, and mRNA expression was evaluated at the single-neuron level using RT-PCR analysis. Electrophysiological studies have revealed that the vast majority of vagal nodose afferent nerves innervating the trachea are capsaicin-insensitive Aδ-fibers. Consistent with this, we found <20% of these neurons express TRPV1 mRNA or respond to capsaicin in a calcium assay. Allergen exposure induced de novo TRPV1 mRNA in a majority of the tracheal-specific nodose neurons ( P < 0.05). The allergen-induced TRPV1 induction was mimicked by applying either brain-derived neurotrophic factor (BDNF) or glial-derived neurotrophic factor (GDNF) to the tracheal lumen. The BDNF-induced phenotypic change observed at the level of mRNA expression was mimicked using a calcium assay to assess functional TRPV1 ion channels. Finally, OVA exposure induced BDNF and GDNF production in the tracheal epithelium, the immediate vicinity of the nodose Aδ -fibers terminations. The induction of TRPV1 in nodose tracheal Aδ -fibers would substantively expand the nature of stimuli capable of activating these cough-causing nerves.


Sign in / Sign up

Export Citation Format

Share Document