Image quality of a novel light-emitting diode (LED)-illuminated colonoscope

Endoscopy ◽  
2016 ◽  
Vol 48 (10) ◽  
pp. 934-938 ◽  
Author(s):  
Sho Sasaki ◽  
Jun Nishikawa ◽  
Hideo Yanai ◽  
Munetaka Nakamura ◽  
Junichi Nishimura ◽  
...  
Author(s):  
Shida Tan ◽  
Richard H. Livengood ◽  
Dane Scott ◽  
Roy Hallstein ◽  
Pat Pardy ◽  
...  

Abstract High resolution optical imaging is critical in assisting backside circuit edit (CE) and optical probing navigation. In this paper, we demonstrated improved optical image quality using VIS-NIR narrow band light emitting diode (LED) illumination in various FIB and optical probing platforms. The proof of concept was demonstrated with both common non-contact air gap lenses and solid immersion lenses (SIL).


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 960
Author(s):  
Jenny Manuela Tabbert ◽  
Hartwig Schulz ◽  
Andrea Krähmer

A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, “white” light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights’ productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption.


2018 ◽  
Vol 4 (11) ◽  
pp. 133
Author(s):  
HyungTae Kim ◽  
EungJoo Ha ◽  
KyungChan Jin ◽  
ByungWook Kim

A system for inspecting flat panel displays (FPDs) acquires scanning images using multiline charge-coupled device (CCD) cameras and industrial machine vision. Optical filters are currently installed in front of these inspection systems to obtain high-quality images. However, the combination of optical filters required is determined manually and by using empirical methods; this is referred to as passive color control. In this study, active color control is proposed for inspecting FPDs. This inspection scheme requires the scanning of images, which is achieved using a mixed color light source and a mixing algorithm. The light source utilizes high-power light emitting diodes (LEDs) of multiple colors and a communication port to dim their level. Mixed light illuminates an active-matrix organic light-emitting diode (AMOLED) panel after passing through a beam expander and after being shaped into a line beam. The image quality is then evaluated using the Tenenbaum gradient after intensity calibration of the scanning images. The dimming levels are determined using the simplex search method which maximizes the image quality. The color of the light was varied after every scan of an AMOLED panel, and the variation was iterated until the image quality approached a local maximization. The number of scans performed was less than 225, while the number of dimming level combinations was 20484. The proposed method can reduce manual tasks in setting-up inspection machines, and hence is useful for the inspection machines in FPD processes.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.


2009 ◽  
Vol 1192 ◽  
Author(s):  
Jesse J Cole ◽  
Heiko Jacobs

AbstractWe report a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium doped GaN substrates to define a narrow sub-100nm width nucleation region. ZnO is synthesized in the defined areas by a hydrothermal technique using zinc acetate and hexamethylenetetramine precursors. Nucleation is followed by lateral epitaxial overgrowth producing single crystal disks of ZnO. The process provides control over the dimension and location of the ZnO crystals. The quality of the patterned ZnO is high; the commonly observed defect related emission in the electroluminescence spectra is suppressed and a single near-band-edge UV peak is observed. Transfer printing of the ZnO microcrystals onto a flexible substrate is also demonstrated in the context of transparent flexible electronics.


2011 ◽  
Vol 480-481 ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao Ming Zhao ◽  
Xiao Yuan Zhou ◽  
Sheng Chun Yuan

This paper compares and analyzes various common sub-pixels layouts in the outdoor LED (Light Emitting Diode) display industry. According to the basic principles of chromatics and the instructions about central wavelength of LED lamps, proposed that the ratio (2:1:1) of the red, green, blue lamps in one display unit of the 4-subpixels arrangement should be changed to 1:2:1 to improve the clarity of the screen. Besides, to solve the chaotic situation of relating technologies, the paper proposed that optimizing technologies of image quality around LED screen can be classified into two groups based on sub-pixels layouts---centralizing and dispersing evenly.


2013 ◽  
Vol 378 ◽  
pp. 440-443
Author(s):  
Chiu Jung Yang ◽  
Chien Sheng Huang ◽  
Chih Wei Chen ◽  
Po Wen Chen

Thepaperis discussedin coloruniformity study.The experiment divided into two steps in this study,first is modules design and simulation. Second is fabrication and measurement.After measure the LEDs property, calculating the ratio of each colored LEDs by using Grassmanns Law,modeling by Solidworks, and simulating the front study by optical software TracePro.Using four-color mixing with self-developed formula to avoid the present white light emitting diode patent, and the four-color grains are Red, Green, Blue and adding Y to modify the overall quality of the mixed light.The phosphorproduceSteabler-Wronsk hardly in the high temperatureas compared tofour-color mixing.Using four-color mixing to producehigher color rendering index than yellow phosphor.Series-parallel array of grain arrangement adopted to achieve the high demand for uniformity, while simplifying the design conditions by a certain current instead of the general mixed light-driven complex driver circuit,the completion of the mixing module using integrating sphere, light spectrum on the spectrophotometer, optical power, color coordinates values, such as mixing uniformity measurements.The chromaticity coordinates errors after complete results of the mixing module measurement and simulation can be controlled under (0.01x, 0.01y).


2016 ◽  
Vol 41 (3) ◽  
pp. E13 ◽  
Author(s):  
Sunil Manjila ◽  
Margherita Mencattelli ◽  
Benoit Rosa ◽  
Karl Price ◽  
Georgios Fagogenis ◽  
...  

OBJECTIVE Rigid endoscopes enable minimally invasive access to the ventricular system; however, the operative field is limited to the instrument tip, necessitating rotation of the entire instrument and causing consequent tissue compression while reaching around corners. Although flexible endoscopes offer tip steerability to address this limitation, they are more difficult to control and provide fewer and smaller working channels. A middle ground between these instruments—a rigid endoscope that possesses multiple instrument ports (for example, one at the tip and one on the side)—is proposed in this article, and a prototype device is evaluated in the context of a third ventricular colloid cyst resection combined with septostomy. METHODS A prototype neuroendoscope was designed and fabricated to include 2 optical ports, one located at the instrument tip and one located laterally. Each optical port includes its own complementary metal-oxide semiconductor (CMOS) chip camera, light-emitting diode (LED) illumination, and working channels. The tip port incorporates a clear silicone optical window that provides 2 additional features. First, for enhanced safety during tool insertion, instruments can be initially seen inside the window before they extend from the scope tip. Second, the compliant tip can be pressed against tissue to enable visualization even in a blood-filled field. These capabilities were tested in fresh porcine brains. The image quality of the multiport endoscope was evaluated using test targets positioned at clinically relevant distances from each imaging port, comparing it with those of clinical rigid and flexible neuroendoscopes. Human cadaver testing was used to demonstrate third ventricular colloid cyst phantom resection through the tip port and a septostomy performed through the lateral port. To extend its utility in the treatment of periventricular tumors using MR-guided laser therapy, the device was designed to be MR compatible. Its functionality and compatibility inside a 3-T clinical scanner were also tested in a brain from a freshly euthanized female pig. RESULTS Testing in porcine brains confirmed the multiport endoscope's ability to visualize tissue in a blood-filled field and to operate inside a 3-T MRI scanner. Cadaver testing confirmed the device's utility in operating through both of its ports and performing combined third ventricular colloid cyst resection and septostomy with an endoscope rotation of less than 5°. CONCLUSIONS The proposed design provides freedom in selecting both the number and orientation of imaging and instrument ports, which can be customized for each ventricular pathological entity. The lightweight, easily manipulated device can provide added steerability while reducing the potential for the serious brain distortion that happens with rigid endoscope navigation. This capability would be particularly valuable in treating hydrocephalus, both primary and secondary (due to tumors, cysts, and so forth). Magnetic resonance compatibility can aid in endoscope-assisted ventricular aqueductal plasty and stenting, the management of multiloculated complex hydrocephalus, and postinflammatory hydrocephalus in which scarring obscures the ventricular anatomy.


Author(s):  
Suzi Seroja Sarnin ◽  
Nur Jumaatul Hidayati Binti Mohammad ◽  
Nani Fadzlina Naim ◽  
Norsuzila Ya’acob ◽  
Azlina Idris ◽  
...  

<span>One of the key issues for those involved in farming and greenhouse is the use of pesticides. In a recent headline, there has been an epidemic of insect infestation that has destroyed 211 hectares of rice plants. These concerns have led to the discussion of possible over-use of pesticides that are not just killing dangerous pests, but also other animals that help combat the pest. In order to overcome the problem, a research was conducted by introducing a smart insect killer.  In this developing project, Pyroelectric (PIR) sensor will be using as a motion detector towards insects. This sensor plays a role to transmit the signal for action in taking care of the plant. The IR sensors will install around the plant, so that it has good range to detect any motion. As a result, suitable chemical spray will trigger to repel these insects. A light emitting diode as an indicator of functional to the system.  "Smart Insect Repeller" will work when certain pests are detected and this will reduce the use of poisons and the quality of the crop will be preserved due to the use of minimal poisons.</span>


Sign in / Sign up

Export Citation Format

Share Document