Long-term performance of the Hancock bioprosthetic conduit for aortic root replacement

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  
2021 ◽  
Vol 10 (10) ◽  
pp. 2055
Author(s):  
Horea Feier ◽  
Andrei Grigorescu ◽  
Lucian Falnita ◽  
Oana Rachita ◽  
Marian Gaspar ◽  
...  

Background: The long-term performance of prostheses in the small aortic root is still unclear. Methods: Patients who received a 21 mm or smaller aortic valve between 2000–2018 were retrospectively analyzed. Propensity matching was used in order to account for baseline differences in 19 mm vs. 21 mm valve subgroups. Results: Survival at 10 years was 55.87 ± 5.54% for 19 mm valves vs. 57.17 ± 2.82% for 21 mm ones in the original cohort (p = 0.37), and 58.69 ± 5.61% in 19 mm valve recipients vs. 53.60 ± 5.66% for 21 mm valve subgroups in the matched cohort (p = 0.55). Smaller valves exhibited significantly more patient–prothesis mismatch (PPM) than larger ones (87.30% vs. 57.94%, p < 0.01). All-cause mortality was affected by PPM at 10 years (52.66 ± 3.28% vs. 64.38 ± 3.87%, p = 0.04) in the unmatched population. This difference disappeared, however, after matching: survival at 10 years was 51.82 ± 5.26% in patients with PPM and 63.12 ± 6.43% in patients without PPM. (p = 0.14) Conclusions: There is no survival penalty in using 19 mm prostheses in the small aortic root in the current era. Although PPM is more prevalent in smaller sized valve recipients, this does not translate into reduced survival at 10 years of follow-up.


2022 ◽  
Vol 8 ◽  
Author(s):  
Leonardo Pietrasanta ◽  
Shaokai Zheng ◽  
Dario De Marinis ◽  
David Hasler ◽  
Dominik Obrist

The development of turbulence after transcatheter aortic valve (TAV) implantation may have detrimental effects on the long-term performance and durability of the valves. The characterization of turbulent flow generated after TAV implantation can provide fundamental insights to enhance implantation techniques. A self-expandable TAV was tested in a pulse replicator and the three-dimensional flow field was extracted by means of tomographic particle image velocimetry. The valve was fixed inside a silicone phantom mimicking the aortic root and the flow field was studied for two different supra-annular axial positions at peak systole. Fluctuating velocities and turbulent kinetic energy were compared between the two implantations. Velocity spectra were derived at different spatial positions in the turbulent wakes to characterize the turbulent flow. The valve presented similar overall flow topology but approximately 8% higher turbulent intensity in the lower implantation. In this configuration, axial views of the valve revealed smaller opening area and more corrugated leaflets during systole, as well as more accentuated pinwheeling during diastole. The difference arose from a lower degree of expansion of the TAV's stent inside the aortic lumen. These results suggest that the degree of expansion of the TAV in-situ is related to the onset of turbulence and that a smaller and less regular opening area might introduce flow instabilities that could be detrimental for the long-term performance of the valve. The present study highlights how implantation mismatches may affect the structure and intensity of the turbulent flow in the aortic root.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document