Creep and Shrinkage Analysis of Partially Prestressed Concrete Members

1989 ◽  
Vol 115 (5) ◽  
pp. 1169-1189 ◽  
Author(s):  
A. S. Prasada Rao ◽  
R. Jayaraman
2005 ◽  
Vol 11 (2) ◽  
pp. 145-151
Author(s):  
Renata Zamblauskaitė ◽  
Gintaris Kaklauskas ◽  
Darius Bačinskas

In this paper, an attempt has been made to extend application of the recently proposed Flexural constitutive model to short‐ and long‐term deformational analysis of flexural partially prestressed concrete members. The effect of tension stiffening and non‐linear time effects of creep and shrinkage are taken into account. Effective modulus method is used for modelling long‐term deformations. The proposed calculation technique is based on the layered approach and use of material stress‐strain relationships. Curvatures prediction results were tested against experimental data of partially prestressed concrete beams reported in literature.


2006 ◽  
Vol 12 (2) ◽  
pp. 124-133
Author(s):  
Renata Zamblauskaite ◽  
Gintaris Kaklauskas ◽  
Povilas Vainiūnas

In this paper, an attempt has been made to extend application of the recently proposed Flexural constitutive model to long‐term deformation analysis of prestressed concrete members. The effect of non‐linear time effects of creep and shrinkage are taken into account. Effective modulus method is used for modeling of long‐term deformations. The proposed calculation technique is based on the layered approach and use of material stress and strain relationships. Curvatures and deflections prediction results were tested against experimental data of prestressed concrete beams reported in the literature.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document