Erratum: “High‐Speed Rail Track Design” by Jan H. Zicha (January, 1989, Vol. 115, No. 1)

1989 ◽  
Vol 115 (3) ◽  
pp. 327-327
Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3022
Author(s):  
Ying-Tzu Ke ◽  
Chia-Chi Cheng ◽  
Yung-Chiang Lin ◽  
Yi-Qing Ni ◽  
Keng-Tsang Hsu ◽  
...  

The severe deterioration of a cement asphalt (CA) mortar layer may lead to the movement of the upper concrete slab and impair the safety of the speedy train. In this study, a test specimen simulating the structure of high-speed rail track slabs was embedded with delaminated cracks in various lateral sizes inside the CA mortar layer. Impact–echo tests (IE) were performed above the flawed and flawless locations. In present study, the IE method is chosen to assess defects in the CA mortar layer. Both traditional IE and normalized IE are used for data interpolation. The normalized IE are the simulated transfer function of the original IE response. The peak amplitudes in the normalized amplitude spectrum and the peak frequency in the traditional amplitude spectrum for the top concrete overlay were used to develop simple indicators for identifying the integrity of the CA mortar layer. The index was based on the difference of the experimental peak amplitude and frequency of the ones calculated from previously developed formulas for plates without substrates. As a result, the technique does not require an experimental baseline for the crack assessment. A field test and analysis procedure for evaluating high-speed rail slab systems are proposed.


2014 ◽  
Vol 1070-1072 ◽  
pp. 755-758
Author(s):  
Yun Feng Ma ◽  
Wei Zong

The high-speed railway is a typical ground systems, if subjected to a larger GIC, will lead to serious incidents. For the power supply and wiring pattern of high-speed railway is different from the public grid, then how to monitor the GIC impact on the high-speed rail electrical systems need to be studied. The paper study the process and pattem of GIC in high-speed rail track circuit, and propose a signal acquisition method of GIC in the track circuit. The sampled signal will be go through the low-pass filter designed by the window function to obtain the GIC.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012035
Author(s):  
Yali Liu ◽  
Jun Dong ◽  
Guohua Li ◽  
Xi Chen ◽  
Yunkai Zhang

Abstract Due to warpage and ballooning of high-speed rail track slab caused by debonding and environmental temperature changes during the deterioration of CA mortar layer being extremely concerned in practical engineering, it is based on numerical simulation of typical working conditions and analysis of test model that the deformation dynamics mechanism of track slab of high-speed rail in service is studied in this paper. Firstly, three kinds of damage conditions of CA mortar layer are designed to simulate the partial stress state of track slab under normal, warping and bulging conditions, and the results of model test are compared with those of finite element analysis so that the accuracy and credibility of the numerical simulation method and results are verified. Then, through finite element numerical simulation, the dynamical mechanism of actual full-scale high-speed rail track slab under vibration load is studied. The results show that the warping deformation around the track slab and the bulging deformation in the middle part under the action of positive and negative temperature gradient load caused by environmental temperature change will have a great impact on the structural performance of itself and CA mortar layer; Bulging deformation of track slab is more destructive to its structure than warping deformation. It is of great practical significance to further study the critical position of track plate warpage and bulging deformation, and to optimize and strengthen the structure of this part; The research results are of great significance to further study the deterioration.


Sign in / Sign up

Export Citation Format

Share Document